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ABSTRACT 

 

Title: Impact of Mixed Convection on Williamson Nanofluid Flow over a Stretching Surface 

 

This research work deals with the mixed convection flow of a shear thinning nanofluid over a 

stretching surface. The surface is assumed to be porous and stretching exponentially. Two different 

cases of heat transfer, i.e., prescribed exponential surface temperature (PEST) and prescribed 

exponential heat flux (PEHF) are used for the analysis. Moreover, an inclined magnetic field is 

applied to the flow and the effects of chemical reaction, heat generation/absorption and viscous 

dissipation are considered.  The boundary layer theory is applied to the fluid model and the 

resultant system of differential equations are presented and simplified with the help of useful 

similarity transformations. Homotopy analysis method is used to solve the governing nonlinear 

system using Mathematica Software. The velocity, temperature and concentration profiles are 

graphically analyzed under the influence of various flow parameters. From the results, it is found 

that increased values of local grashof number increases the velocity profile while the opposite 

behavior is seen for the temperature profile. An enhanced temperature profile corresponds to 

enhanced Eckert number and the enhanced chemical reaction parameter reduces the concentration 

profile. The friction drag, Nusselt number and Sherwood number are studied for varying 

dimensionless parameters. A comparison with the existing literature is also performed. 
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Chapter 1 

 

Introduction 

 

 

1.1  Williamson Nanofluid 

         Nanofluids triggered researchers' interest since they played an important role in a variety of 

heat-related equipments, technical gadgets and industrial items. Modern eras focus on finding 

ways to save energy and acquire better outcomes. Regarding this, improvement in thermal-

exchanges can be one of the important features. Nanoparticles are employed in nanofluids which 

are usually metals, oxides, carbides or carbon nanotubes. They are nanometer sized particles 

possessing less than 100 nm diameter and have enhanced viscosity, greater thermal conductivity 

and are more stable when compared to the other fluids. Nanofluids are a new and different type of 

heat transfer flowing fluids laying foundations for nanotechnology and are produced by scattering 

and suspending nanoparticles in typical traditional fluids. The practice of nanofluid is quite 

efficient in many fields of engineering and science. They have prominent advantages in heat 

transport, nuclear reactor, solar energy, paper production, boiler, laser diode arrays etc. Their 

utility also extends to applications in medicine, chemical engineering and many others. Nanofluids 

possess special qualities that potentially make them useful for a variety of applications in heat 

transfer. Some of them include microfluidics, engine cooling, automotive thermal dissipation, 

household kitchen appliances, fuel cells and heat exchangers. The performance of numerous 

application, including heat transfer, medication delivery, higher oil recovery, lubrication and many 

others, is improved by the better rheological, thermal and wettability characteristics of nanofluid. 

Recent study and experiments have shown that with the introduction of nanofluids the physical 

features of traditional fluids can be improved. The properties of nanofluids are significantly 

influenced by the structure of its additives. Nanofluid can be created using either a single phase 

(solid phase) or a two phase approach (liquid phase). Nanofluids own superior thermophysical 
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properties when compared to the properties of base fluids (water or oil), they have excessive 

potential usage in countless fields. Choi [1] studied the nanoparticles and their properties. He found 

that the suspensions differ significantly from their conventional fluids in a number of ways, the 

most remarkable of which is that they have far better thermal performance than the corresponding 

base fluids. 

          It is a known fact that non-Newtonian fluids are defined as liquids that violate the Newtonian 

law of viscosity. Such fluids' viscosity is dependent on the tensile stress that is applied to the fluid. 

There are lots of cases of these fluid in common liquid items, including custards, plasma, soap, 

toothpaste, jelly, corn starch, paint, melted butter and a number of others. Non-Newtonian fluids 

can be expressed by a wide variety of fluid models. These fluids exhibit shear-thinning and shear-

thickening properties. Scientists and academics have always been interested in non-Newtonian 

fluids because of how frequently they are used in industrial and biological operations. Blood, 

polymer solutions, ketchup, paper pulp, crude oil and biological applications are a few examples 

of these fluids. Due to their numerous and complicated structures, non-Newtonian’s fluid flowing 

properties cannot be explained by a single constitutive equation. In many business and 

technological programs, non-Newtonian fluids have currently obtained extra interest and relevance 

than Newtonian fluids. For non-Newtonian fluids, the perceived viscosity is dependent on the 

geometry of the flow, shear rate and other variables rather than being constant at the specified 

pressure and temperature. Williamson fluid is familiarized as a shear thinning fluid that is a non-

Newtonian fluid and was initially revealed by Williamson. Williamson [2] proposed a theory to 

investigate pseudoplastic elements and constructed a constitutive equation to explain the properties 

of pseudoplastic fluids. Experiments he carried out were based on the equations and supported the 

findings regarding the flow properties. Williamson fluid has extensive range of applications, 

particularly in the performance pertaining to pseudo-plastic fluids that is extensively applied in 

commercial applications. It also has its applications in biological engineering like hemodialysis 

and measuring heat and mass transport rate within the walls of blood vessels. Khan et al. [3] 

showed their interest in the work initiated by Williamson and examined the flow of Williamson 

fluid with chemical reaction effect by using the homotopy analysis technique. Kothandapani and 

Prakash [4] evaluated the consequences of peristaltic flow of Williamson nanofluid in an elastic 

medium under the process of a thermal emission. In the same year, Krishnamurthy et al. [5] 

examined the impact of nanoparticle on the persistent motion of MHD Williamson fluid flow via 
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porous media towards a horizontally stretching sheet.  The influences of mixed convection and 

chemically reactive species on the Williamson fluid produced by a non-isothermal plate and cone 

in a porous media was studied by Khan et al. [6]. Nanoparticles have the ability to improve 

convective heat transfer within the boundary layer region. Hamid and Khan [7] examined the 

thermo-physical characteristics of Williamson nanofluid flow with the existence of mixed 

convection and with magnetic field. Ali et al. [8] investigated how the electric field affects the 

MHD and Williamson nano-fluid flow and heat transmission capabilities across a heated surface 

with varying thickness.  

  

  

1.2  Mixed Convection 

  

          Mixed convection occurs when a flow is simultaneously influenced by an exterior forcing 

mechanism and internal forces related to volume. Mixed convections that is in actual both forced 

and free convection, often used as a mechanism of a heat transfer. When a flowing fluid, such as 

air or water, is moving, the heat transfer process takes place. Differences in temperature within the 

flowing fluid start causing convection. A porous media and the dissipative convective flow have 

numerous applications, including fiber insulation, geysers, soil pollution, electric kettles, and 

lights. Internal fluids' ability to transfer thermal energy is termed as a transmission of convectional 

heat. Convection happens when molecules in a liquid, gas or liquid-gas mixture move collectively. 

Although there is some initial conduction of heat between molecules, the majority of heat 

transmission occurs as molecules move around inside a fluid. In a lid-driven cavity with an arched 

wall and filled with a CuO-water nanofluid, Nada et al. [9] concentrated on the mathematical 

analysis of steady two-dimensional mixed convection flow. Rashidi et al. [10] looked into the 

outcomes of a magnetic field for the combined convective heat transfer for nanofluid flow within 

a vertical channel with periodic walls. The features of hydrodynamic fluid and heat analysis were 

also studied. Selimefendigil and ztop [11] used the finite element approach to analyze the effects 

of mixed convection for nanofluid in a three-dimensional flow with two internally spinning 

circular cylinders. Vertical walls were kept at a constant temperature whereas rotating cylindrical 

surfaces were considered to be adiabatic. For a partially layered non-Darcy porous medium, Aly 
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et al. [12] examined the mixed convection flow for a nanofluid. They also proposed an enhanced 

version of the incompressible smoothed particle hydrodynamics (ISPH) method in light of the 

advantages of particle-based methods. 

  

  

1.3  Magnetohydrodynamics 

  

         Magnetohydrodynamics (MHD) deals with magnetic behavior observed in electrically 

conducting fluids like salt water, plasma and liquid metals. If a conducting fluid is exposed to a 

continuous magnetic flux, then an electromagnetic force is produced which in turn generates 

electric current. Magneto-hydrodynamics (MHD) research was first documented in astronomical 

and geophysical issues. Due to its numerous uses in the fields of medicine, engineering and 

petroleum refining, this research has drawn a great deal of focus over the past few years. 

Additionally, magnetohydrodynamics for nanofluid have demonstrated their value in a variety of 

sectors. Biomedicine, optical activators, metallurgical techniques, magnetic cell insulator, blood 

flow monitoring and optical control keys are a few of them. The fundamental concept of MHD 

holds that the magnetic fields can generate current in a conducting fluid, polarizing the fluid and 

therefore altering the magnetic field. Pal and Mandal [13] analyzed the flow of a nanofluid in 

magnetohydrodynamic flow that conducts electricity across a nonlinear elastic surface with pores. 

They discovered for larger amount of the heat generation/absorption parameter, dual solutions 

existed. Hayat et al. [14] explored three-dimensional and magnetohydrodynamic (MHD) flow of 

the Oldroyd-B nanofluid with the appearance of generating and absorbing heat and surface 

imitating conditions for convection. Using a nanofluid moving due to a semi-infinite flat plate as 

a boundary, Prasad et al. [15] investigated the impacts of radiation and chemical reaction on MHD 

free convective heat and also mass transfer flow. Mohyud-Din et al. [16] examined flow with the 

analysis of mass and heat transfer of a flowing fluid past a swiftly moving flat plate by applying 

Buongiorno's model.  
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1.4  Viscous Dissipation 

  

         Viscous dissipation demonstrates how kinetic energy is transformed into enthalpy. Viscous 

dissipation is a factor in the energy equation, while it serves as an energy source and modifies 

temperature distributions, thus affecting heat transfer rates. It is the energy loss brought on by the 

forces of friction between the fluid particles. Umavathi et al. [17] inspected a viscous fluid flowing 

via an ascending channel with temperature and thermal resistance to evaluate the transfer of heat 

and mass properties. Viscous dissipation affects the sheet in a different way depending on whether 

it is being heated or cooled. The analysis of heat transmission due to the presence of viscous 

dissipation is of tremendous interest in light of the extensive practical applications. Badruddin and 

Quadir [18] observed the impact of viscous dissipation and radiation in a square porous annulus 

subjected to inside and outside cold temperatures. Hsiao [19] inspected viscous dissipation impact 

on micropolar nanofluid for a stretched sheet and examined the heat and mass transfer in 

hydromagnetic flow. The flow of second-grade nanoliquid via a revolving disk is examined by 

Hayat et al. [20] and Joule heating while dissipation were the factors considered for studying heat 

transport. Saleem et al. [21] inspected the movement of a nanofluid caused due to a stretched 

surface with heat source and viscous dissipation. Thermophoresis and Brownian motion were also 

included. 

  

  

1.5  Heat generation/absorption 

  

           Heat generation is the process by which one type of energy, such as electrical or chemical, 

is modified into thermal energy (heat energy) inside a body. Temperature changes across the 

boundaries require the heat transfer process. There are several industrial and engineering uses for 

heat propagating mechanisms such as in food processing, nuclear reactors, thermal transmission, 

etc. It is crucial to many energy-related applications, including automotive radiators, lubricants 

and coolants used in mechanical processes. Abbas et al. [22] used nanofluid flowing by a curved 

stretchable surface to investigate the effects of heat generation/absorption and 

magnetohydrodynamics. A numerical technique, shooting method was employed to investigate the 
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solutions numerically. The use of heat absorptive/generative transport done within a three-

dimensional flow of Williamson fluid instigated by bidirectional surface stretching non-linearly 

was explored by Bilal et al. [23]. Upreti et al. [24] studied the effects of suction/injection, heat 

absorption/generation on MHD flow of Ag-water nanofluid past a stretching flat plate in a porous 

media with Ohmic-viscous dissipation. Saba et al. [25] looked at a boundary layer radiative flow 

in two dimensions with heat generation/absorption. The fluid flow was across a curved surface and 

involved CNTs (carbon nanotubes). Eid and Mahny [26] investigated the impact of steady flow 

and heat transfer in the presence of heat absorption and generation over a nonlinearly stretching 

surface in a porous medium saturated with a Sisko flowing fluid. The significant effects of 

radiation and heat generation/absorption for Maxwell nanofluid fluid model was taken by Hayat 

et al. [27] to further explore the MHD flow for in case of a stretched surface. 

  

1.6  Chemical Reactions 

  

         Chemical reaction is the process by which one or more chemicals are changed into one or 

more other compounds. The atoms that constitute the reactants are rearranged during a chemical 

reaction to form different products. The evolution of the idea of a chemical reaction was crucial in 

shaping chemistry as we know it today. For thousands of years, people have studied and used 

chemical processes for a variety of purposes, such as the smelting of iron, burning of fuels, the 

brewing of beer and wine, the production of glass and pottery and the production of cheese. In 

addition to the Earth's geology, atmosphere and oceans, all biological systems exhibit complex 

chemical interactions on regular basis. Numerous instances of sophisticated chemical processes 

can be observed in all living systems, also in the geology, environment and ecosystems of the 

entire globe. Chemical processes must be distinguished from physical changes. State shifts can 

also occur during physical alterations, such as when ice melts into water or water evaporates into 

vapour. The physical characteristics of a material alter when it goes through a physical 

metamorphosis, but its chemical structure stays the same. When a substance undergoes a physical 

transformation, its physical characteristics will alter but its chemical composition won't with the 

existence of a heat sink, heat source and a chemical reaction, Nayak et al. [28] investigated the 

effects of mass and heat transfer in a boundary layer flow through a porous material of a 
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viscoelastic fluid subject to a longitudinal magnetic field. Using the combined effects of radiative 

heat and mass transfer in the presence of first-order chemical reaction, Saqib et al. [29] examined 

the effects of slip at a vertical plate for the originating flow of Casson flowing fluid. Mjankwi et 

al. [30] investigated the magnetohydrodynamic (MHD) flow of nanofluid across a shrinking 

surface that is inclined in the existence of thermally radiation and chemical process. Sabir et al. 

[31] worked to investigate the effects of chemical processes and gyrostatic microorganisms on the 

two-phase Casson nanofluid moving through a stretched sheet which was permeable and the 

effective numerical method known as the shooting approach was used to handle the resulting 

equations. 

  

1.7  Thesis Organization 

  

         The thesis comprises of six chapters. 

         Chapter. 1 is about a detailed introduction related to the existing work. 

 

         Chapter. 2 is related to a detailed literature review. It includes the literature that is the 

foundation of the current work. 

 

         Chapter. 3 contains important definitions and concepts that are used in our study. The 

fundamental laws for analysis of subsequent chapters are also included in this chapter. 

 

          In Chapter. 4, the analysis of Williamson nanofluid flow in two dimensions caused by a 

stretched surface with exponential velocity is carried out. The fluid characteristics are affected by 

the consideration of MHD and production and absorption of heat. Through the utilization of the 

homotopy analysis approach, a system of PDEs which are the model equations is solved. 

 

         Chapter. 5 is devoted to the mixed convective nanofluidic flow analysis of a shear thinning 

fluid studied due to an exponentially stretching surface. The phenomenon of 

magnetohydrodynamics and in addition chemical reaction are also responsible for obtaining 

important results. The considered equations are converted into the nonlinear ODEs and the ensuing 
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system is solved using homotopy analysis techniques. A complete analysis on the obtained results 

has been carried out. 

 

         Chapter. 6 is about the conclusions of a review and extended work. It also contains some 

future potential studies. 
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Chapter 2 

  

  

Literature Review 

  

  

         Analysis on non-Newtonian nanofluid has received attention of scientists and researchers 

since the last decades. The significance and practicality of nanofluid have piqued researchers' 

interests in both numerical and experimental research. Williamson fluid is introduced to be a shear 

thinning non-Newtonian fluid, initially introduced by Williamson. Waqas et al. [32] examined the 

heat generation and absorption for a Williamson fluid flowing due to a stretching surface with 

modified Fick's and Fourier idea and the occurrence of mixed/forced nonlinear convection alters 

the flow. Ali et al. [33] studied the application of PEST and PEHF (two conditions of heat) in 

magnetohydrodynamic Williamson nanofluid flow in accordance with suction/injection. Yusuf et 

al. [34] investigated the impact of magnetic field on a Williamson fluid flow over a porous material 

in the presence of heat source that was not uniform, thermal radiation and chemical process. Nazir 

et al. [35] considered the work on mass and energy transfer for Williamson fluid by considering 

non-Fourier model. It is assumed that the Williamson fluid exhibits thermal relaxation behavior, 

which causes the fluid to avoid thermal changes in order to preserve its thermal equilibrium. 

Srinivasulu et al. [36] examined outcomes of magnetohydrodynamics applied at an angle on 

Williamson nanofluid flow while heat transfer and mass transfer for an extending sheet was 

studied. In a nonlinear stretching plate, Williamson fluid was examined by Dawar et al. [37]. In 

addition, they also considered the characteristics of activation energy. Habib et al. [38] focused on 

comparing the results obtained by the flow of micropolar, Maxwell, Williamson and Newtonian 

fluids over stretching surfaces. The comparison was done in the presence of magnetic field and 

double diffusion. Loganathan et al. [39] analyzed how nanoparticles suspended in Williamson 
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fluid can increase the speed of mass transfer and thermal conductivity for a vertical surface. Patil 

et al. [40] evaluated the mixed as well as bio-convection in a Williamson flow that has liquid 

oxygen diffusion. Sharma et al. [41] reviewed the results of chemical process and heat radiation 

for the flow of Williamson nanofluid over a linearly extending sheet. The irregular unsteady fluid 

flow and transmission of heat across a non-Newtonian fluid subjected to elongating surface was 

analyzed by Reddy and Machireddy [42]. Reddy et al. [43] employed the Cattaneo-Christov model 

including MHD and radiation for Williamson fluid flow for a surface that has pores and this 

examination was done in the presence of chemical interaction and suction/injection. Sulochana 

and Belagumpi [44] examined the time-independent magnetohydrodynamic Williamson fluid's 

thermal transfer properties past a surface in the existence of a chemical equilibrium process. Song 

and Ying [45] explored the unsteady magneto-Williamson mixed convection flow brought by 

extended container with substantial irregular heat source/sink properties. 

  

       Mixed convection is the most prevalent type of convection, which happens when both forced 

and natural convection are taking place at the same time. Due of its numerous astonishing and 

contemporary uses, this work has drawn many scholars. Hussain and Malik [46] worked on 

gyrostatic swimming bacteria movement within a nanoliquid flowing above a stretching cylinder 

in the existence of magnetohydrodynamics and mixed convection. Using the Runge-Kutta-

Fehlberg (R-K-F) method, the governing equations’ numerical solution was obtained. Zhang et al. 

[47] looked into the implications of Joule heating, convection as well as mass repulsion in a two-

dimensional magnetohydrodynamics flow of a tiny liquid its stagnation point, flowing over a 

curved elastic surface that can be stretched or contracted. Ali and Bagh [48] investigated the bio 

convection nanofluid flow for a rotating sphere near a stagnation area. Arafa et al. [49] studied 

nanofluidic peristaltic motion across a porous media. It was simulated using the non-homogeneous 

nanofluid model and studied how the mixture's characteristics and behavior with respect to the size 

and form of the nanoparticles changes. Sharada et al. [50] evaluated the outcome of magnetism, 

Dufour and Soret impacts on the flow of a fluid that is non-Newtonian viscoelastic liquid. Arshad 

et al. [51] analyzed the motion of fluid and mass and heat transfer occurring on a porous, flat 

surface during the presence of mixed convection and magnetic field. Haq et al. [52] explored the 

mixed convection flow of nanofluid over an inclined uneven area with the consideration of heat 

source and chemical process. Hameezah et al. [53] observed the various boundary conditions for 
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the CNT-water nanofluid combined convection and entropy formation. Using Buongiorno's model, 

Safdar et al. [54] examined radiating Maxwell nanofluid flow under mixed convection 

phenomenon. While buoyancy forces work in bio convection, the concept of the microbe was 

employed to stabilize the suspended nanoparticles. Sudarsana and Sreedevi [55] took into account 

chemical reaction process, radiation, induced electric field, solid-state stratification and the liquid 

was incorporated in a porous media when analyzing the nanofluid flow across a stretched surface. 

Almaneea and Abdulmajeed [56] analyzed nanofluid flow and homogeneous/heterogeneous 

chemical reactions affecting the flow. The fluid flowing was also impacted by the phenomenon of 

mixed convection. 

  

           Magnetohydrodynamics (MHD) may regulate fluid flow and enhance heat analysis in the 

presence of electrically conductive fluids. Thus, MHD flow research is crucial for engineering and 

industry applications. Salawu et al. [57] scrutinized the results of mass and heat transport for the 

flow of a Maxwell nanofluid having variable properties. The Arrhenius pre-exponential kinetics 

were used to create the species molecular mixture and the Non-Newtonian fluid was described 

using the Maxwell theory. Zhou et al. [58] evaluated the unstable Casson fluid flow above a 

dimensionally stable surface close to a stagnation point. The flow model also incorporated effects 

of an irregular heat source, thermal radiation, MHD and slipping. Adigun et al. [59] discussed 

influence of magnetohydrodynamics on the flow of viscoelastic nanofluid. The nanofluid was 

flowing towards an inclined cylinder which was stretching linearly and effects of stagnation point 

were also examined. Warke et al. [60] studied on steady, magnetohydrodynamic flow of a micro 

polar liquid in two dimensions under the appearance of chemical reaction process and heat 

sink/source. Yahya et al. [61] investigated thermal transport of a hybrid fluid considering the 

existence of magnetic field, heat source and thermal dissipation above a penetrable surface. The 

results of employing catalyst and viscosity dielectric breakdown on electrically conducting 

nanofluid flowing over sustained porous sheet were evaluated by Gopal et al. [62]. Brownian 

motion and diffusion due to thermophoresis were also considered with the Buon-giorno fluid 

model. For the magnetohydrodynamics (MHD) and stagnation point theory, Hayat et al. [63] 

inspected the movement of Jeffrey's liquid towards a surface that stretches nonlinearly and has 

suitable surface roughness. The properties of heat transfer were investigated using melting effect, 

viscous dissipation and internal heat generation.  A magnetic flux that is not uniform was taken 
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into account. Megahed et al. [64] inspected variable fluid properties during modeling of unstable 

flowing fluid over a surface. Additionally, they reviewed the effects of injection/suction in the 

considered stream. Vinodkumar et al. [65] used this concept and explored results for a convection 

flow in MHD Maxwell nanofluid flow using a flexible stretched sheet and the Cattaneo-Christov 

flux model. Heat and mass transmission were brought into consideration during the study. 

Abdelmalek et al. [66] discussed Buon-giorno nano-model due to the existence of mass and heat 

transfer for MHD and Prandtl-Eyring flowing nanofluid. Biswas and Rajib [67] analyzed the 

conduct of a 2-dimensional Maxwell nanofluid flowing because of a stretched surface in studied 

Brownian motion involving magnetohydrodynamics (MHD). Bejawada et al. [68] assessed the 

results of a heat source, chemical reaction and radiation for the flow of MHD Casson flowing fluid 

through an inclined nonlinear stretched surface. 

 

         Viscous dissipation is the terminology used to describe the unchangeable process through 

which work is performed by the fluid between its adjacent layers after the application of shear 

force and results in heat generation. Hamid and Amair [69] examined the remarkable benefits of 

nonlinear thermal radiation, heat source and sink for Casson nanofluid flow past a vertical thin 

needle with the consideration of ohmic-viscous dissipation. A non-linear shrinking sheet was 

involved for the stability analysis of a Cu-Al2O3/water hybrid nanofluid and this was investigated 

by Lund et al. [70]. To create a Cu-Al2O3/water hybrid nanofluid, the nanomaterials were added 

to the resulting water-soluble (basic fluid) while Cu and Al2O3 make up the hybrid nanomaterial. 

Chu et al. [71] studied the important role of viscous dissipation and magneto-hydrodynamics for 

a cross or secondary flow. For particular values of dimensionless parameter, dual solutions were 

produced. Aziz with Asim [72] analyzed the significance of viscous dissipation with linear radiant 

energy for the entropy assessment of Powell-Eyring hybrid nanofluid. The fluid is flowing and 

heat transfer is performed via convection with the volumetric entropy production. Abbas and 

Munawwar [73] analyzed the micro polar fluid with entropy generation study and the flow was 

considered above a surface that was being stretched and was affected by thermal radiation, viscous 

dissipation as well as the magnetic field. The inconsistent mixed convection of a chemically 

reactive and radiating nanofluid was examined by Rikitu et al. [74]. The fluid's varying 

characteristics in a porous medium were also a part of the study. Saeed and Anwa [75] studied the 

influences of chemical reaction, Joule heating, viscous dissipation and thermal radiation in 
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correspondence with the Casson fluid flowing owing to a stretchable surface. Nandi and 

Kumbhakar [76] looked into the magnetohydrodynamic flow for tangent hyperbolic nanofluid due 

to a stretching wedge and focused on convective heating and Navier's velocity boundary slip. The 

results of radiation and viscous dissipation on MHD free convective mass and heat transfer of an 

incompressible, viscous fluid flow via a stretched surface was found by Navivela et al. [77]. The 

numerical computation of cross-flow of a non-Newtonian fluid flow is the focus of Hussian et al. 

[78] research. They considered a homogeneous channel with porous walls on and studied flow 

dynamics. Tangent-Hyperbolic fluid flow in two dimensions has been considered in presence of 

regard to magnetic fields that act transversely. According to research, the chemical and mechanical 

industries usually deal with various types of highly viscous flows that can efficiently use porous 

walls and channels that are slippery. Khan et al. [79] examined the important aspect of friction 

drag for heat generation and viscous dissipation the study was done for fluid flow and heat 

transmission. 

  

         Heat generation or absorption phenomenon is common in numerous engineering and 

industrial uses.  Chen [80] has looked into the problem related to heat transfer with mixed 

convective fluid flowing with the consideration of heat generation and also absorption and 

considered stretched surface with thermal radiation. The flow analysis and heat transfer 

mechanism of a fluid flow with carbon nanotubes in an asymmetric framework with flexible walls 

was explored statistically by Ahmed et al. [81] with the existence of heat generation/absorption. 

Additionally, a number of researchers have looked into a variety of phenomenon, including diverse 

geometries, with expanding and contracting surfaces for nanofluids. Temperature changes across 

boundaries requires the heat transfer process. In relation to this. Nuwairan et al. [82] studied the 

behavior of nanofluid under the consideration of a magnetic field while taking heat generation 

/absorption into account. The task employed the Lattice Boltzmann technique to investigate the 

heat transport through natural convection in a two-dimensional container filled with a nanofluid 

and three different wall shapes were analyzed. Walters' B fluid flow due to porous material under 

the effects of thermal radiation, heat prodution and also absorption was investigated by B. Johnson 

and Olajuwon [83]   they concluded the consequences arising from the factors of thermal diffusion, 

radiation and chemical reaction. Yaseen et al. [84] conducted research on the significance of 

nanofluid flow between two alike permeable plates with the existence of heat absorption and 
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generation process. Eid et al. [85] examined the flow and heat transmission caused by a sheet 

stretching in an exponential manner and two nanoparticles were added to the considered fluid and 

heat generation was also an important part of the study. Yesodha et al. [86] analyzed the flow of a 

nanofluid in three dimensions past a stretched sheet. The nanofluid velocity decreases as the 

stretching sheet becomes porous, while both of the temperature as well as the concentration 

increase simultaneously. Shah et al. [87] studied the CuO-water nanofluid flow with mixed 

convection and heat generation/absorption. The adiabatic obstructions cold and heated surfaces 

were considered. Because of its prominence in physical features of the flow, the heat generation 

or absorption was examined for Casson nanofluid and the results were studied by Gajbhiye et al. 

[88]. Considerations were done for the constant, laminar, electromagnetic flow of Casson 

nanofluid over parallel plates under the impact of Hall current, chemical reactions and also Joule 

heating. 

  

          Chemical reactions are a fundamental component of technology, society and life itself. In 

view of this, Khan et al. [89]  viewed the thermo physical aspects of higher-order chemical reaction 

and viscous dissipation for nanofluid flow while also taking a continually extending porous sheet 

into consideration. The flow model involved a porous medium and assumed laminar, time-

invariant, MHD, incompressible Newtonian nanofluid with two spatial coordinates. The flow of 

Walter-B nanofluid with chemical reactions, non-linear thermal radiation and stationary point 

region was investigated by Khan et al. [90]. Brownian and thermophoresis motion consequences 

were used to investigate the properties of nanofluid. Fluid conducts electricity when a uniform 

magnetic field was present. Furthermore, the impacts of Joule heating and activation energy were 

used to study the phenomenon of mass and also heat transfer. Uddin et al. [91] analyzed the MHD 

and chemically reacting flow of Prandtl-Eyring nanofluid with the involvement of enthalpy change 

and heat transfer was also a part of the research. The improvement in heat transmission was studied 

by Punith et al. [92] by selecting a suitable ferromagnetic fluid or base fluid as an active liquid. In 

this regard, the flow was examined across a stretched flat sheet with pores and chemical reaction 

was taken into consideration. A third grade magnetohydrodynamic fluid flow model with the 

existence of chemical reactions and heat source or sink was explored by Raja et al. [93] using an 

Artificial Neural Network. Varun et al. [94] explored the role of chemical reactions and the 

magnetic field effect on the Casson nanoliquid flow across a curved stretching sheet. Furthermore, 
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Brownian motion, thermophoresis effects and exponential heat sources were used to examine the 

mass and heat transfer characteristics.  

 

         The above investigations lead to the conclusion that the phenomenon of mixed convection for 

Williamson nanofluid flowing across an exponentially porous stretched surface with mass suction, 

inclined magnetic field and heat absorption/generation has not been explored yet. Thus the main 

purpose here is to investigate the consequence of mixed convection on Williamson nanofluid flow 

over an exponentially stretchable sheet. The flow problem has been mathematically modelled 

keeping in view the basic laws of fluid mechanics and heat transmission. Application of suitable 

similarity transformations change the fluid model equations into a set of ODEs. The resulting 

system is then solved through homotopy analysis method. The results of the fluid flow and mass 

and heat transfer are graphically analyzed under the effects of different flow parameters. The 

findings are obtained for different physical flow parameters in terms of skin friction coefficient, 

velocity, local Nusselt number, temperature, concentration and the Sherwood number. The results 

of the current work are anticipated to be helpful for the future studies to advance the development 

in the scientific and technical sectors. 
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Chapter 3 

 

 
Preliminaries 

 

 
         The current chapter includes certain relevant definitions and important fundamental laws for 

analysis of next chapters. 

 

 

3.1 Fluid  [97] 

 
        Fluid is a material that deforms continuously when an external force is applied. Examples of 

fluids are liquid, gasses and plasmas. 

 

 

3.2 Fluid Mechanics  [97] 

 
         Fluid mechanics studies the nature and characteristics of fluids both in motion and at rest. It 

consist of two dominant branches. 

 

 

3.2.1  Fluid statics  [97] 

 
           It comprises of the study related to behavior of fluid's particles at rest. 

 

 

3.2.2  Fluid dynamics  [97] 

 
           It includes the study on behavior of fluid's particles in motion. 
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3.3  Stress  [98] 
        It is illustrated as the average force per unit of a body's surface area on which various forces 

act. 

.
Area

Force
Stress   

It is measured in  2Nm  or  
2./ smkg   in SI system and has dimensions  [

𝑀

𝐿𝑇2
] . Stress consist of 

two parts. 
 

 

3.3.1  Shear Stress  [98] 

 
           It is referred to as a force that tends to cause a material to slip across a plane and is applied 

parallel to the considered material’s cross-section. 

 

 

3.3.2  Normal Stress [98] 

 
           It is noted to be a form of stress when a force is assumed to work normally on the cross 

section of the considered material. 

 

 

3.4  Strain  [98] 

 
       If a force is acted upon a considered material, then strain is expressed as a measurement of the 

relative deformation that occurs. It is a non-dimensional property of the fluid. 

 

 

3.5  Viscosity  [98] 

 
        Viscosity is a physical trait of fluids associated with the shear deformation of fluid's particles 

exposed to applied forces. Viscosity can be described in two ways which are as follows: 

 

 

 

(3.1) 



18 

 

3.5.1  Dynamic Viscosity  [98] 

 
           A measure of the proportion of shear stress to velocity slope is termed as dynamic viscosity 

or absolute viscosity )(  and 

.
gradientVelocity 

stressShear 
  

The dynamic viscosity is measured in 2/ mNs or smkg ./  (SI-System) and the related dimensions 

are noted to be  
LT
M  . 

 

 

3.5.2  Kinematic Viscosity  [97] 

 

           The relation between absolute viscosity and density can be expressed by kinematic viscosity

  .  Mathematically, it is written as: 

   .



                                             

 

It has units of sm /2  and the dimensions are   
T

L2

 . 

 

 

3.6  Newton's Law of Viscosity [98] 

 

        It is demonstrated as the application of shear stress on a fluid, leads to directly proportional 

relation of stress and velocity gradient. Newton's law of viscosity is mathematically written as 

    ,
dy

du
yx                                        

   ,
dy

du
yx                                         

where yx  represents shear stress applied on the fluid element and   is proportionality constant. 

 

 

(3.3) 

(3.4) 

 (3.5) 

(3.2) 
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3.7  Newtonian Fluids  [98] 

 

        Newtonian fluids are those that adhere to Newton's viscosity law i.e., there is a linear relation 

between velocity gradients and shear stress yx . Examples of Newtonian fluids include water, air 

and alcohol etc. 

 

 

3.8  Non-Newtonian Fluids  [98] 

 

         The kind of fluids which signifies a nonlinear connection between shear stress and strain rate 

or those fluids that are not in accordance with Newton's law of viscosity are noted to be Non-

Newtonian fluids 

   ,1, 







 n

dy

du
n

yx                                      

                                                              .)( n

yx
dy

du
k                                      

Above equation is reduced to Newton's law of viscosity with respect to 1n  and k   

                                                               ),(
dy

du
yx                                           

,)( 1 n

dy

du
k  

where is denoted for apparent viscosity, k is symbolized for consistency index and n  is 

indicated for flow behavior index. Toothpaste, blood and ketchup are some examples of non-

Newtonian fluids. 

 

 

3.9  Nanofluids  [98] 

 

          Nanofluids are a special kind of fluid which consist of nanometer-sized particles involving 

base fluid. Nanoparticles include metals, non-metals and metal carbides etc. Base fluid include 

 (3.6) 
 

 (3.7) 
 

 (3.8) 
 

(3.9) 
 



20 

 

water, oil and other lubricants. Nanofluids are used in cosmetics, heat exchangers, electronic 

cooling system etc. 

 

 

3.10  Williamson Nanofluid [98] 

 

           Williamson fluid is introduced as a shear thinning fluid that is non-Newtonian. It has wide 

range of implementations, particularly in the performance of pseudoplastic fluid, which is 

extensively used for industrial purposes. 

The tensor


S  for our considered fluid is indicated as Nadeem et al. [95]. 

,





IpS  

and 

,]

1

)(
[ 1.

0 A









 




 

in which  stand for extra stress tensor, 0  and   for limiting viscosity at zero shear rate and 

infinite shear rate, 0 for time constant, 1A  represent first Rivlin-Erickson tensor and 
.

  is 

define  as 

,
2

1.

   

 

),( 2

1Atrace  

The tensor reduces to 

,]1[ 1

1
.

0 A   

 

 

 

 

 

 (3.10) 

(3.11) 

   (3.12) 

    (3.13) 

  (3.14) 
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3.11  Flow  [98] 

 

          There are different types of flow discussed as: 

 

3.11.1  Compressible Flow  [98] 

 

              A flow in which the fluid's density keeps on changing with the flow is indicated as 

compressible flow. 

 

 

3.11.2  Incompressible Flow  [98] 

 

             A flow in which the subsequent fluid's density does not vary throughout the flow 

corresponds to incompressible flow. 

 

 

3.11.3  Turbulent Flow  [98] 

 

              If each liquid particle does not follow a clear path and the path of one particle crosses the 

other particle's path, then it is termed as turbulent flow. 

3.11.4  Laminar Flow  [98] 

 

              This flow is observed if liquid particles travels in regular paths under no interference 

among them. 
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3.11.5  Unsteady Flow  [98] 

 

              An unsteady flow is expressed as a flow through which amount of liquid flowing per 

second changes. i.e., for any studied fluid property  , we can see the following relation 

                                                                    .0




t
                                  

 

3.11.6  Steady Flow  [98] 

 

              A steady flow is the one for which the flow rate of the liquid through any section is 

observed to be constant, i.e., if any fluid property is denoted by , then 

                                                                    .0




t
                                             

 

3.12  Methods of Heat Transfer [99] 

 

           There are three significant forms of heat transfer from one position to another. 

 

3.12.1  Conduction  [99] 

 

              It describes a mechanism of heat transfer which studies heat flows from hot to cold body 

due to collision of molecules or atoms in solids and liquids which are in contact. Mathematically 

it can be expressed as 

                                                              .~ Tkq                                  

In above representation, negative sign represents that heat is transferred from higher to lower 

temperature,  denotes local heat flux density, A is surface area, k represents thermal conductivity 

and T  indicates temperature gradient. 

 

 

(3.15) 

(3.16) 

(3.17) 
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3.12.2  Convection [99] 

 

              Convection is a heat transfer mechanism in which heat is transferred from a hot to a cold 

region, owing to the fluid’s particles movement this method of heat transfer is known as 

convection. In mathematics, 

                                                             ,TAhQ                           

where h  is coefficient of convective heat transfer, A is a surface area and T is temperature 

gradient. 

 

 

3.12.2.1  Forced Convection  [99] 

 

               Forced convection is a different type of heat transfer during which the heat is conducted 

owing to an external force. Examples are air conditioners, fans and pumps etc. 

 

 

3.12.2.2  Natural Convection  [99] 

 

               As the internal temperature of the fluid changes, so does the density in the gravitational 

field. Buoyancy forces cause natural convection or free convection due to density  fluctuations. 

Examples of natural convection is the rise of warm air, sea breeze and land breeze etc. 

 

 

 

3.12.2.3   Mixed Convection  [99] 

 

                Mixed convection is the most common type of convection, which occurs when both 

forced and natural convection occur simultaneously. This results from the interaction between 

buoyancy and external forces. The technique of mixed convection is used in various technical 

devices. 

(3.18) 
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3.12.3   Radiation  [99] 

 

               Radiation is the movement of heat energy as waves or particles through a material 

medium. Sunlight or heat from the sun, microwaves from an oven and X-rays from an X-ray tube 

are few related examples. 

 

 

3.13  Thermal Conductivity [99] 

 

             The ability of a thing to transmit heat is referred as thermal conductivity. Mathematically, 

                           ,
areagradient etemperatur

heatdistance
tyconductivi Thermal




                 

so 

                                                                   

𝑘 =
𝑄 × 𝐿

𝐴 × ∆𝑇
 , 

                                

where A  is denoted for the cross-sectional area, k  for designated as thermal conductivity, Q  for 

typified for the heat flow per unit time and T  for temperature difference. 

The SI unit for thermal conductivity is written as  KmW ./  or Ksmkg ./. 3
and have dimensions  

ML

T3
.
  

 

 

3.14  Thermal Diffusivity  [99] 

 

           Thermal diffusivity is the relationship between heat conduction and the product of density 

and specific heat. Mathematically, we have 

  (3.19) 

 (3.20) 
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                                                             ,
pc

k


                                       

 

where k  is characterized as thermal conductivity,  represents density and pc symbolizes specific 

heat capacity. SI system provides sm /2  as its units and   
T

L2

  are its dimensions. 

 

 

3.15  Viscous Dissipation [101] 

 

           The energy produced by the fluid's motion during a viscous fluid flow is captured by its 

viscosity and transformed into its internal energy and this phenomenon is known as viscous 

dissipation. It is a permanent process and helps in lifting the fluid's temperature. 

 

3.16  Magnetohydrodynamics (MHD)  [101] 

 

           Magnetohydrodynamics analyzes the motion corresponding to electrically conducting fluid 

with in a magnetic field. In MHD, magnetic fields and fluids that conduct electricity are involved. 

The phrase "magneto hydro-dynamics" (MHD) relates to the phrase "magneto" refering to a 

magnetic field, "hydro" meaning liquid and "dynamics" referring to motion. Examples of 

electrically conducting fluids are rain water, salt solution, liquid soap etc. 

 

3.17  Permeability [101] 

 

          Permeability can be expressed as an intensity of spongy substance that allows liquids to 

travel through it. Large pores in surfaces make them highly permeable. 

 

 

 

(3.21) 
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3.18  Dimensionless numbers [101] 

 

3.18.1  Reynolds Number [101] 

 

              The relationship between inertial and viscous forces can be described through Reynolds 

number. 

We have 

                                                               ,
force Viscous

force Inertial
Re                                      

i.e. 

.Re
22



 vL

L

Lv
  

Here  is noted for density, v for mean velocity, L for characteristic length,  for dynamic 

viscosity and   for kinematic viscosity. 

 

3.18.2  Prandtl Number [101] 

 

              The Prandtl number, which has no dimensions, measures the relationship between 

momentum diffusivity    and heat diffusivity  .1   

The formula for the Prandtl number in mathematics is 

    ,
ratediffusion  Thermal

ratediffusion  Viscous
Pr                             

i.e. 

,Pr
1 k

c p




                               

where   represents the kinematic viscosity, 1 is thermal diffusivity, k represents thermal 

conductivity and pc  shows the specific heat at constant pressure. Momentum diffusivity prevail 

(3.22) 

(3.23) 

(3.24) 

(3.25) 
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for  1Pr    while influence of thermal diffusivity is seen for  1Pr   . 

Prandtl number strongly affects the relationship between the respective closeness of momentum 

boundary layers and also thermal boundary layers. Higher Pr values indicate that the boundary 

layer for momentum is stronger than that of thermal boundary layer. 

Prandtl number is crucial for free and as well as forced convection. For various fluids, the Prandtl 

number can have a broad range of values. It can range from 0.7 to 1 for gases, water has a Pr value 

between 1 and 10, and it ranges from 0.001 to 0.03 for liquid metals and from 50 to 2000 for oils. 

 

 

3.18.3  Grashof Number [101] 

 

              It reflects the behavior of the buoyancy forces against the viscous forces in a flowing 

fluid. It is employed to establish the fluid boundary layer flow regime in laminar systems. 

Mathematically, it can be written as 

),(
2

3

 TTg
L

Gr 


 

where  denotes volumetric thermal expansion coefficient, g denotes acceleration due to gravity,

 denotes kinematic viscosity, L denotes characteristic length,T and T are fluid and surrounding 

temperatures respectively. 

 

3.18.4  Eckert Number [101] 

 

             The relationship of kinetic energy to enthalpy of the heat flow is referred to as the Eckert 

number. 

Mathematically, it can be expressed as 

,
v

Enthalpy

energy Kinetic 2

Tc
Ec

p
  

where  is represented the fluid's velocity, pc for specific heat and T  for temperature difference. 

If the Eckert number   1Ec   is noticeably low, the part in the energy equation representing the 

  (3.26) 

 (3.27) 
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effect of Joule heating is usually omitted. To determine the viscous energy dissipation when the 

flow speed is low, the multiplication of the Eckert number and Prandtl number is utilized,  

i.e. 

 
.Pr.

2

Tk

v
Ec





 

 

3.18.5  Nusselt Number [101] 

 

              Nusselt number is distinguished as dimensionless number and described to be the ratio 

of convective and conduction heat transfer at a fluid's boundary. 

Mathematically, it can be expressed as  

      ,
ferheat trans Conductive

ferheat trans Convective
LNu                                  

 

   ,
/ k

lh

lTk

Th
NuL







                                       

where h  represents coefficient of heat transfer, l denotes characteristic length and k  shows the 

thermal conductivity. 

 

3.18.6  Sherwood Number [101] 

 

             The Sherwood number which is also noted as mass transfer Nusselt number is an 

important dimensionless number and is readily seen in mass-transfer phenomenon. It is found to 

be the ratio of the convective mass transport to rate of diffusive mass transport. Mathematically, 

it is expressed as 

Convective mass transfer rate
,

Diffusion rateB

h L
Sh

D


   

where L is symbolized for characteristic length, BD  for mass diffusivity while h for convective 

mass transfer layer coefficient. 

 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

https://en.wikipedia.org/wiki/Nusselt_number
https://en.wikipedia.org/wiki/Dimensionless_number
https://en.wikipedia.org/wiki/Convection
https://en.wikipedia.org/wiki/Diffusion
https://en.wikipedia.org/wiki/Mass_diffusivity
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3.18.7  Skin Friction [101] 

 

              Skin friction is a type of friction that results from the relative motion of a solid's surface 

with in a fluid. Mathematically, it can be written as 

,
2

2U
C w

f



  

where U signifies velocity, w represents shear stress at the wall and  is indicated for density. 

Skin friction is created by the drag that results from the viscous strains at the boundary layer. 

Compared to turbulent flow, the boundary layer is thinner in laminar flow, thus skin friction has a 

less impact. If an object is shaped in a way that promotes laminar flow, skin friction can be 

minimized. 

 

 

 

3.19  Basic Equations [101] 

 

3.19.1  Equation of Continuity  [101] 

 

             The physical illustration of continuity equation, also named as law of mass conservation, 

indicates that net mass of the system is always conserved. Mathematically, it is noted to be: 

,0).( 







t
V


  

The density does not vary for incompressible fluids, so equation changes as 

,0. 


V  

If two dimensional flow is talked about, then 

 

     (3.32) 

         (3.33) 

       (3.34) 

           (3.35) 
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and for three dimensional flow, 

 

The net flux of the system can be demonstrated through this law. 

 

3.19.2  Momentum Equation  [101] 

 

              This equation is physically related to law of conservation of momentum and therefore 

demonstrates that the total momentum of system will always be conserved. If incompressible fluid 

is taken into account, then the equation is written as: 

,




 bdiv
dt

Vd
   

where  represents density, 


V signifies velocity,  characterizes Cauchy stress tensor, div   

exhibits surface forces, 


b means body force per unit volume and dt
dV  points towards inertial 

forces. The component form of momentum equation is as follows:   

                                                                                                                                                                                                                                                                              

x -component; 

 

          

           

y  -component; 

 

 

           

 z  -component; 

 

           

   (3.36) 

  (3.37) 

(3.38) 

(3.39) 

(3.40) 

 

 
𝜌 

 

 
𝜌 
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3.19.3  Energy Equation   [101] 

 

              The energy equation is based on the conservation of the respective total energy. 

Mathematically, 

div  

 

 

where  depicts density, pc symbolizes specific heat,  identifies heat flux, T indicates 

temperature and k typifies thermal conductivity, dt
dT

pC )(  is indicated for total internal energy 

and  div  for total heat flux. 

 

3.19.2  Concentration Equation  [101] 

 

              This equation physically means that concentration of the system is conserved and is 

derived from Fick's law. The equation in mathematical form is 

.2CD
dt

dC
  

For two dimensional flow field; 

,~~
2

2

2

2





























y

C

x

C
D

y

C
v

x

C
u  

where C  is denoted to be the concentration and D is noted for diffusion coefficient. 

 

 

 

 

 

(3.41) 

(3.42) 

(3.43) 

(3.44) 
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3.20  Homotopy analysis method  [102] 

 

            The homotopy analysis technique (HAM) is a powerful tool for solving highly nonlinear 

differential equations analytically. Liao (1992) was the one who introduced this method and it was 

adopted by many researchers as it guarantees convergence of the desired solution and it provides 

a great freedom to choose initial guesses for the desired solution. 

To illustrate method of homotopy analysis, consider the differential equation 

N wx  0,   #   
 

where N is denoted for a nonlinear operator, )(xw  represents unknown function and x is denoted 

for the independent variable. The following is the Zeroth-order deformation equation 

 

1  rL wx;r  w0x  rN wx;r .     2.44
 

Here r  is symbolized as embedding parameter with varying values from  0  to 1 , L  is represented 

as auxiliary linear operator, h  is noted as nonzero auxiliary parameter, );( rxw   is considered as 

unknown function and )(xw   stands for the initial approximation.  

Equations corresponding to 0r and 1r  are as follows 

wx;0  w0x, and wx;1  wx.     2.45
 

The solution wx;r  modifies from initial approximation  xw0   to the final solution  xr   with 

the conversion of r  from  0   to  1 . Taylor's series expansion leads to the following expressions 

wx;r  w0x 
n1



wnxrn , wnx  1
n!

nwx;r
rn

r0

.

 

If  1r  , then 

wx  w0x 
n1



wnx.   #   

 

We obtain the following n th order deformation equation by differentiating n  times the Zeroth-

(3.37) 
 

       (3.46) 

      (3.47) 

   (3.48) 

 (3.49) 

   (3.45) 
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order deformation equation, with respect to r , dividing the resulting equation by !n  and setting 

,0r  we get 

Lwnx  nwn1x  Rnx,   #   
 

Rnx  1
n  1!

nN wx;r

rn

r0

,   #   

 

where 

n 
0, n  1

1, n  1
.   #   

 

3.20.1  Example  

Solve the differential equation  

𝑦′ + 𝑦2 = 1, 

subject to the condition 

𝑦(0) = 0. 

Assume that 𝑦(𝑥) can be expressed by 

𝑦(𝑥) = ∑ 𝐶𝑛𝑒
−𝑛𝑥

∞

𝑛=0

, 

where  𝐶𝑛 is a coefficient.  

Let  

𝑦0(𝑡) = 1 − 𝑒−𝑥. 

Choosing the auxiliary linear operator  

𝐿𝜙 =
𝑑𝜙

𝑑𝑥
+ 𝜙   ,    𝐿 =

𝑑

𝑑𝑥
+ 1, 

as 

𝐿[𝑦𝑚 − χ𝑚𝑦𝑚−1] = ℎ𝐻[𝑦𝑚−1 + ∑ 𝑦𝑗𝑦𝑚−1−𝑗 − (1 − χ𝑚)𝑚−1
𝑗=0

̇ ], 

where       

𝜒𝑚 = {
0           , 𝑚 ≤ 1
1          , otherwise

 

 

 (3.50) 

 (3.51) 

(3.52) 

(3.53) 

(3.55) 

(3.56) 

(3.57) 

(3.58) 

(3.59) 

(3.54) 
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put  𝑚 = 1  in eq. (3.57 ) we get  

𝑦1(𝑥) = −
ℎ

2
𝑒−𝑥 + ℎ𝑒−2𝑥 −

ℎ

2
𝑒−3𝑥. 

 

 

For 𝑚 = 2   

𝑦2(𝑥) = −
ℎ

2
(1 +

ℎ

2
) 𝑒−𝑥 + ℎ (1 +

ℎ

2
) 𝑒−2𝑥 −

ℎ

2
(1 + ℎ)𝑒−3𝑥 +

ℎ2

2
𝑒−4𝑥 −

ℎ2

4
𝑒−5𝑥. 

It is found that the corresponding mth-order approximation of  𝑦(𝑥) can be expressed by  

𝑦(𝑥) ≈ ∑ 𝑟𝑚,𝑛(ℎ)𝑒−𝑛𝑥,

2𝑚+1

𝑛=0

 

where 𝑟𝑚,𝑛(ℎ) is a coefficient dependent of h. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3.60) 

(3.61) 

(3.62) 



35 

 

 

 

 

Chapter 4 

 

 
 

The Magnetohydrodynamic Flow of Williamson Nanofluid over a 

Permeable Stretchable Sheet 

 

 
4.1  Introduction 

 

 
        The incompressible, steady, two-dimensional and Williamson nanofluid flow owing to a 

stretching surface is analyzed. The surface is taken as porous and stretching exponentially. The 

influential elements of MHD and heat generation/absorption are also considered. The system of 

differential equations are rearranged as a system of less complicated differential equations by 

implementing pertinent similarity transformations. The solution of the obtained equations are 

derived by employing homotopy analysis method. The impact of consequential parameters for 

velocity, temperature and in addition concentration profiles are inspected graphically. Moreover, 

the conduct of skin friction coefficient, Nusselt number and Sherwood number is plotted for 

prominent parameters. The validity of the results is confirmed through a comparative study with 

the existing literature. 

          



36 

 

 
 

Fig. 4.1. Physical Model. 

 

             

 

              

4.2  Mathematical construction of models 

 

 
        Let us inspect steady and two-dimensional flow based on Williamson nanofluid induced by a 

porous sheet. The sheet is believed to be stretching exponentially with a velocity WU directed along 

x -axis. An external magnetic field experiencing strength 0B  is applied at an angle   to the 

surface. The assumed flow is further influenced due to the consideration of heat 

generation/absorption. The Cartesian coordinate system  yx,   is the foundation for this system in 

which velocity field is expressed to be 

v⃗ = [𝑢 ̃(𝑥, 𝑦), �̃�(𝑥, 𝑦), 0]. 

The continuity along with momentum and also energy equations Lie et al. [96] are observed as 

∇. v⃗ = 0, 

 

  (4.1) 

  (4.2) 
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𝜌
𝜕v⃗ 

𝑑𝑡
=



 . S⃗ + J × B⃗⃗ − 𝜌g⃗  , 

cpf
dT
dt




. k



 T  cp p
DB



 C.



 T  DT

T
T.



 T  Q0T  T,   #   
 

dC
dt




. DB



 C  DT



 T

T
,   #   

. 

where  is noted for nanofluid density,  B⃗⃗  the total magnetic flux,


S  for stress tensor, J   for electric 

current density, g⃗  for gravitational field, fpc )( and ppc )(  for heat capacities of considered fluid 

and assumed nanoparticles respectively, T for temperature, BD for Brownian diffusion 

coefficient, C for nanoparticle volumetric fraction, TD  for thermophoresis diffusion coefficient , 

𝑄° for heat generation coefficient and T  for ambient fluid temperature. 

The tensor


S  for our considered fluid is indicated as Nadeem et al. [95]. 

,





IpS  

and 


  

0  
1  

.


A1 ,   #   
 

where  is denoted for extra stress tensor, 0 for limiting viscosity at zero shear rate and   for 

limiting viscosity at infinite shear rate, 0 for time constant, 1A for first Rivlin-Erickson tensor 

and 
.

  is defined 

,
2

1.

   

 

).( 2

1Atrace  

The tensor reduces to 

.]1[ 1

1
.

0 A   

 (4.3)  

 (4.4) 

   (4.5) 

 (4.6) 

(4.7) 

   (4.8) 

    (4.9) 

(4.10) 
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The component of extra stress tensor are 

xx  201  
.
 ũx

,

xy  yx  201  
.
 ũy

 ũ
x
,

yy  201  
.
 ũy

,

  #   

 

and  xz  yz  zx  zy  zz  0   

Electromagnetic force is demonstrated when E⃗⃗ = 0 

J  × B⃗⃗ = −𝜎𝐵°
2𝑠𝑖𝑛2𝛽𝑢,̃ 

where 0B represents magnetic field in perpendicular direction to the surface and  epitomizes 

electrical conductivity. 

Making use of above equation in )5.42.4(   and applying boundary layer assumptions, we get the 

equations given as below Lie et al. (2021): 
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  The boundary conditions for mentioned system are 
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and for PEST and PEHF cases , the conditions given respectively as 
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 (4.11) 

(4.12) 

   (4.13) 

      (4.14) 

(4.15) 

    (4.16) 

    (4.17) 

   (4.18) 

 (4.19) 
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  and  

.when,,0~   yCCTTuu e  

For the expressed equations, u and v are symbolized as the velocity components in the respective 

directions, 0U as reference velocity, as the electrical conductivity, T as the ambient temperature,

 as the thermal diffusivity, 1k as the permeability of the porous medium,  as kinematic viscosity,

C as concentration, C as the ambient nanoparticle volume fraction, Q  as the heat generation 

coefficient. 

Employing following similarity transformations 
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Case for PEST: 
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Case for PEHF: 
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U 

,

h  C  C
Cw  C

.   #   
 

Apply similarity transformations, Eq. ( )13.4  is identically satisfied while equations  

)16.414.4(   becomes 

.0)sin()(2 22  fMKffffff   

PEST case 

  ,0Pr 2    QNhNff tb  

 

 (4.20) 

 (4.21) 

 (4.22) 

(4.23) 

 (4.24) 

 (4.25) 
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0)(Pr  
b

t

N

N
hfLeh  

 

PEHF case  

  ,0Pr 2    QNhNff tb  

 

.0)(Pr  
b

t

N

N
hfLeh  

After the use of the same similarity transformations for the boundary conditions, we get 

. 0)(  ,1)0(  ,)0(  ffvf w  

PEST case 

. 0)( ,1)0(  ,0)( ,1)0(  hh  

PEHF case 

,  0)( ,1)0( , 0)(  ,1)0(  hh  

where  is denoted as Williamson parameter, K as porosity parameter, M as magnetic number,  

Pr  as  Prandtl number, 
bN and 

tN as the Brownian and thermophoresis motion parameter, Q as 

the heat source/sink parameter and Le  as the Lewis number. These parameters are presented as     

  

l
U 

3/2
e

3x

2l , M  2B 
2l

U0
e

x
l , K  2vl

k1U
e

x
l ,

Pr  v
 , Q  Q

Cpf

2l

U
e

x
l , Le  

DB
,

N t 
DT

T

Cpp

Cpf

TwT
 e

x

2l , Nb  DB


Cpp

Cpf
Cw  C.

  #   

 

 Skin friction coefficient, local Nusselt number along with Sherwood number are given as 

,
)(

~
,

)(

~
  ,

2

 





CCD

qx
Sh

TTk

qx
Nu

U
C

wB

m

w

w

x

w

w

f



 

w   ũ
y

 
2

ũ
y

2

y0

, qw  k T
y

y0

, qm  DB
C
y

y0

,   #   

 

Where
mww qq ~,~, are noted for local wall shear stress, local heat flux and mass flux respectively. 

Due to the similarity transformations, Eq. ( )33.4 attain the following forms 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

(4.32) 

(4.33) 
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
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

 NueffC xfx
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.)0()Re2( 2/12 hShe x
l

x
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Where  
l

exU l
x

2

2
0Re    is the key factor known to be Reynolds number. 

 

4.3  Solutions through homotopy analysis method 

 

       The requisite initial guesses  000 ,, hf   and associated linear operators ( ℒ𝑓 , ℒ𝜃, ℒℎ)  for the 

momentum, energy and also concentration equations can be adopted in the following way:  

 

           ,exp   ,exp,exp1 000   hvf w
         

Lf f 
d3 f

d3
 df

d
, L   d2

d2
 , Lh h  d2h

d2
 h,   #   

 

and 

Lf a
1
 a

2
exp  a

3
exp  0,   #   

      

L a
4

exp  a
5

exp  0,   #   
    

Lh a
6

exp  a
7

exp  0,   #   
 

where 
ia  71i  are indicated to be arbitrary constants. To further proceed, the deformation 

problems in line with the zeroth and nth ordered problems are expressed as: 

 

 

 

 

 

 

(4.34) 

(4.35) 

  (4.36) 

     (4.37) 

      (4.48) 

    (4.39) 
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4.3.1  Zeroth-order deformation problem (PEST case) 

 

1  r Lf


f ;r  f0  rfNf


f ;r ,   #   

 

1  r L

;r  0  rN


f ;r,


;r,


h;r ,   #   

 

1  r Lh


h;r  h0  rhNh


f ;r,


;p,


h;r ,   #   

 


f 0;r  vw,



f


0;r  1,



f


;r  0,   #   

 


0;r  1,


;r  0,   #   

 


h 0;r  1,


h;r  0,   #   

 

Nf


f , r 

3

f ;r

3
 2



f ;r



2



f ;r

2

f ;r

2
 

3

f ;r

3

2

f ;r

2

K  Msin2 

f ;r


,   #   

 

N

f ;p,


;p,


h;p 

2;p 

2
 Pr


f ;p 


;p 


Pr


f ;p 



;p  PrNb



h;p 




;p 


PrN t


;p 


2

 Q


;p 


,   #   

 

Nh


f ;p,


;p,


h;p 

2

h;p

2
 LePr


f ;p 


h;p


 Nt

Nb

2;p 

2
,

,   #   

 

in which, ]1,0[r   is denoted for embedding parameter,  ,f  and 
h for auxiliary parameters 

(non-zero) and  𝒩𝑓, 𝒩𝜃,and  𝒩ℎ, for nonlinear operators. 

 

    (4.40) 

    (4.41) 

   (4.42) 

    (4.43) 

    (4.44) 

   (4.45) 

(4.46) 

(4.47) 

(4.48) 



43 

 

 

4.3.2  nth-order problem 

Lf fn  n fn1  fRn
f ,   #   

 

L n  n n1  Rn
 ,   #   

 

Lh hn  n hn1  hRn
h ,   #   

 

      ,000  

nnn fff  

n 0  n  0,   #    

hn 0  hn  0,   #    

Rn
f   fn1

  


k0

n1
2fm1k

 fk
  fn1kfk

  f
n1k

 fk


K  Msin2fn1


,   #   

 

    ,Pr
)

(
Pr 1

1

111

1
0

1

0

1 
























 











  n

kknt

kknbkknkkn

n
k

n

k

nn Q
N

hNff







R  

Rn
h   hn1

  
k0

n1

LePr fn1khk
   N t

Nb

n1


,   #   

 

n 
0, n  1,

1, n  1.
  #   

 

When 0r and 1r   then, 


f ;0  f

0
,


f ;1  f ,   #   

 


 ;0  

0
,  ;1   ,   #   

 


h ;0  h

0
, h ;1  h .   #   

 

As r varies from 0 to 1  , then  


f ;r,


;rand 


h;r  change from the initial guesses 

          (4.49) 

         (4.50) 

           (4.51) 

         (4.52) 

        (4.54) 

        (4.53) 

          (4.55) 

        (4.56) 

       (4.57) 

       (4.58) 

       (4.59) 

      (4.60) 

      (4.61) 
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f0,  0  and  h0   to last obtained results      ,f  and  )(h   respectively. Now 

expressing through Taylor series, the following expressions are achieved 


f ;r  f0 

n1



fnrn , fn  1
n!

n

f ;r
rn

r0

,   #   

 


 ;r  0 

n1



nrn , n  1
n!

n

;r
rn

r0

,   #   

 

h ;r  h0 
n1



hnrn , hn  1
n!

n

h;r
rn

r0

.   #   

 

Choosing the values of the auxiliary parameters in order to converge the series )64.462.4(    at  

,1r  we accomplish 

f   f0 
n1



fn,   #   

 

   0 
n1



n,   #   

 

h   h0 
n1



hn.   #   

 
 

The solutions  nnn hf ,,  of the respective Eqs. )53.451.4(   Involving special solutions  

fn
,n

,hn
   is written down as 

fn   fn
   a1  a2e  a3e,   #   

 

n   n
   a4e  a5e,   #   

 

hn   hn
   a6e  a7e,   #   

 

It is demonstrated that constants a i )81( i   by means of boundary conditions  )54.452.4(    

are given by 

a2  a4  a6  0, a3 
fn


 0

 1, a1  vw  a3  fn
0,

a5  1  n
0, , a7  1  hn

0.   #   
 

 

 

    (4.62) 

     (4.63) 

     (4.64) 

     (4.65) 

      (4.66) 

       (4.67) 

     (4.68) 

  (4.69) 

 (4.70) 

 (4.71) 
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4.3.3 Zeroth order problem (PEHF case) 

 
 

1  r Lf


f ;r  f0  rfNf


f ;r ,   #   

 

1  r L

;r  0  r N


f ;r,


;r,


h;r ,   #   

 

1  r Lh


h;r  h0  rh Nh


f ;r,


;r,


h;r ,   #   

 


f 0;r  vw,



f


0;r  1,



f


;r  0,   #   

 






0;r  1,

;r  0,   #   

 

h 0;r  1,


h ;r  0,   #   

 
 

Nf


f , r 

3

f ;r

3
 2



f ;r


2



f ;r 

2

f ;r

2
  3


f ;r

3

2

f ;r

2

 K  Msin2 

f ;r


,   #   

 

N

f ;r, , r,


h;r 

2

;r

2
 Pr


f ;p 


;r
  Pr



f ;r



;r

 PrNb


h;r




;r
  PrN t



;r


2

 PrQ

;r

,   #   

 

Nh


f ;r,


,r,


h, r 

2

h;r
2

 LePr

f ;r



h;r


 N t

Nb

2

;r
2

.   #   

 

where  ]1,0[r   is indicated as embedding parameter,  ,f  and h  as non-zero auxiliary 

parameters while 𝒩𝑓, 𝒩∅,and  𝒩ℎ, are represented as nonlinear operators. 

 

 

 

 

 

 

 

(4.72) 

    (4.73) 

(4.74) 

(4.75) 

 (4.76) 

    (4.77) 

        (4.78) 

       (4.79) 

      (4.80) 
,

      

, 
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4.3.4  nth-order Problem 
 

Lf fn  n fn1  fRn
f ,   #   

 

L n  n n1  Rn
 ,   #   

 

Lh hn  n
hn1  hhRn

h ,   #   
 

fn0  fn
 0  fn

   0,   #   
 

n0  n  0,   #   
 

hn0  hn  0,   #   
 

 

Rn
f   fn1

  


k0

n1
2fn1k

 fk
   fn1kfk

   f
n1k

 fk


K  Msin2fn1


,   #   

 

Rn
   n1

   Pr
k0

n1 
k0

n1
fn1kk

  fn1k
 k  Nbn1k

 hk


N tn1k
 k


 PrQn1 ,   #   

 
 

 

Rn
h   hn1

  
k0

n1

LePr fn1khk
   N t

Nb

n1


,   #   

 

n 
0, n  1

1, n  1
.   #   

 

The equations associated with 0r  and 1r   are 

f ;0  f0,


f ;1  f ,   #   

 

 ;0  0,

 ;1   ,   #    


h ;0  h0,


h ;1  h .   #   

 

As r  rises starting from  0  to  1  , then  


f ;r,


;r  and  


h;r   modify from initial guesses  

 ,0 f  0  and )(0 h  to the ultimate solutions 𝑓(𝜂), 𝜙(𝜂) and ℎ(𝜂) respectively. Now expanding 

in Taylor series keep in in mind, the parameter r  we reach at 

  (4.81) 

 (4.82) 

 (4.83) 

 (4.84) 

 (4.85) 

  (4.86) 

      (4.87) 

      

(4.88) 

        (4.89) 

    (4.90) 

       (4.91) 

         (4.92) 

               

(4.93) 
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
f ;r  f0 

n1



fnrn , fn  1
n!

n

f ;r
rn

r0

,   #   

  


;r  0 

n1



nrn , n  1
n!

n

;r
rn

r0

,   #   

 

h ;r  h0 
n1



hnrn , hn  1
n!

n

h;r
rn

r0

.   #   

  

The series )96.494.4(   converges at 1r   for the correct choice of the auxiliary parameters 

and 

f   f0 
n1



fn,   #   

 

   0 
n1



n,   #   

 

h   h0 
n1



hn,   #   

 

The required solutions   nnn hf ,, of the Eqs. )83.481.4(   is demonstrated as 

fn   fn
  a8  a9e  a10e,   #   

 

n   n
  a11e  a12e,   #   

 

hn   hn
  a13e  a14e,   #   

 

in which the constants a i )148( i  through the boundary conditions )86.484.4(   are given 

by 

b9  b11  b13  0, b10 
fn


 0

 1, b8  v w  b10  fn
0,

b12  1 
n


 0

, b14  1  hn
0.   #   

 
 

 

 

 

 

             (4.94) 

          (4.95)              (4.95) 

             (4.96) 

    (4.97) 

  (4.98) 

     (4.99) 

   (4.100) 

    (4.101) 

       (4.102) 

       (4.103) 
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4.4  Solution Analysis 

 
4.4.1  Convergence Discussion 

 

 
            In the methodology, the convergence region is plotted to find solutions of the 

corresponding momentum, energy and also concentration equations. In addition, befitting values 

of auxiliary parameters  ℏ are obtained by finding convergence region and constructing  ℏ -curves 

for the needed solution. These  ℏ -curves are shown in the Figs. 2.4 & 3.4 . The required ranges 

of the auxiliary parameters ℏ  are as follow. 

 

 

Convergence region for PEST case 

 0.93  f  0.2,  0.98    0.15,  1  h  0.35.   #   
 

 

Convergence region for PEHF case 

 0.96  f  0.2,  1    0.2,  1  h  0.15.   #   
 

 

 

 

Table 4.1. Convergence for the series solutions of different order of approximation when  

,,5.1,1,1
4
  KMQ ,5.1wv ,2.0,5.1Pr,1  tb NN and 5.0  . 

Order of approximation f 0  0 PEST case  0 PEHF case h0

1 -1.32083 -1.20000 -1.20000 -0.82500

5 -1.55987 -1.28337 -1.27525 -0.41284

10 -1.58125 -1.28926 -1.27895 -0.35859

15 -1.58286 -1.28950 -1.27897 -0.35577

20 -1.58301 -1.28950 -1.27897 -0.35588

25 -1.58303 -1.28950 -1.27897 -0.35588

30 -1.58303 -1.28950 -1.27897 -0.35588
 

  (4.105) 

   (4.106) 
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                                                    Fig. 4.2.  ℏ -curves for PEST case. 

 

       

 Fig. 4.3.  ℏ -curves for PEHF case. 
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 4.5  Discussion and Analysis 

 

 
         The purpose of present section is to pursue the ongoing impact of dissimilar parameters 

corresponding to velocity, temperature and also concentration distributions. Fig. 4.4 is graphed to 

find how the velocity distribution )(f  changes under the impact of inclined magnetic field angle

 . It is computed that fluid's velocity and the thickness referring to boundary layer lessens down 

with an intensified  .The behavior of magnetic parameter represented by M for velocity 

distribution is examined and displayed in Fig. 4.5. The figure exhibits that velocity profile reduces 

at larger values of magnetic parameter. Actually, for an amplified magnetic field, a resistive force 

known to be Lorentz force becomes more active and contributes towards the resistance for the 

fluid particles, resulting in decrease of the velocity profile. For intensified Prandtl number, 

temperature profile    reveals a weaken behavior for both the considered cases of PEST and 

also PEHF as noticed from Figs. 4.6 & 4.7. It is owing to decrease in thermal diffusivity with 

enhanced Pr values because Prandtl number and thermal diffusivity have inverse relationship with 

each other. Impact of heat source Q  on temperature profiles are sketched in Figs. 4.8 & 4.9 for 

the two different cases. It is analyzed that in PEST and also PEHF cases, a better temperature 

distribution and resultant thermal layer is achieved for boosted heat source Q . Influence of 

dimensionless parameter tN on temperature profile are displayed in Figs. 4.10 & 4.11. Here 

temperature profile increases by varying the values of tN  and keeping the rest of the parameters 

fixed for both the cases. The concentration profile )(h  obtained for unalike values of Lewis 

number Le  and in addition, Brownian motion parameter bN are displayed through the plots. 

Influence of dimensionless number Le  on concentration profiles )(h   are presented through Figs. 

4.12 & 4.13.  In both cases it is apparent that the concentration profile )(h is significantly reduced 

due to the enhanced values of Lewis number. The concentration distribution and thickness of the 

boundary layer for distinct value bN  have been observed in Figs. 4.14 & 4.15 and the results show 

that increasing values of Brownian motion parameter declines the concentration profile )(h  for 

PEHF and PEST cases whereas the effect of bN for concentration profile in case of PEST is slightly 
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more prominent as compared to PEHF case. It is to be mentioned that by augmenting bN  the 

arbitrarily motion of microscopic particles escalates which shortens the mass transfer rate. 

         The friction drags fC are determined for the various values of porosity parameter K in 

accordance with the growing rate of mass suction wv ,  and this is shown graphically in Fig. 4.16. 

This image makes it clear that the strength of porosity parameter K  greatly influences fC .  If K is 

ignored, then it reaches to its maximum values i.e., a decreasing behavior of skin friction 

coefficient is observed. In addition to this result, fC gradually diminishes as the suction parameter 

gets stronger. According to Fig. 4.17, the heat transfer depicted by Nusselt number Nu  is depicted 

for the various values of bN  with amplified values of suction. It is obvious from the result obtained 

that though Nu declines with the rise of bN and it keeps on rising for elevated values of suction. 

Heat drains due to suction since it results in intensified rate of heat transfer. The conduct of 

Sherwood number Sh  for numerous values of Le  are shown with the continuous fluctuation of 

the suction in Fig. 4.18. This outcome demonstrates that Sherwood number Sh   rises when values 

of Le   are elevated. It also shows an interesting behavior as mass suction continues to grow 

continuously. Table 4.1 show the convergences of series solutions and it exhibits that the solution 

converges for 30th order of approximation in case of )0(f   for )0(h  at the 25th order of 

approximation while for )0( and ),0( at 20th order of approximation, the convergence is 

achieved. Skin friction coefficient values, in numerical form are also computed and compared with 

the existing work of Ali et al. [33] in Table 4.2. These numerical values of fC are achieved using 

the same parametric values of exiting research work, that points to the same situation. Considering 

this table, we can state that our findings and those of Ali et al. [33] are in perfect harmony. 
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Fig. 4.4. Variation of )(f   for increased  values. 

 

 

      

       
Fig. 4.5. Variation of )(f   for increased M values. 
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Fig. 4.6. Variation of )(  for increased Pr values in case of PEST. 

 

 

 
Fig. 4.7. Variation of )(  for increased Pr values in case of PEH. 
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Fig. 4.8. Variation of )(  for increased Q values in case of PEST. 

 

 

 

     

  Fig. 4.9. Variation of )(  for increased Q values in case of PEHF. 
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Fig. 4.10. Variation of )(  for increased tN  values in case of PEST. 

 

 

 

 

 

Fig. 4.11. Variation of )(  for increased tN  values in case of PEHF. 
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Fig. 4.12. Variation of )(h  for increased Le  values in case of PEST. 

 

 
Fig. 4.13. Variation of )(h  for increased Le  values in case of PEHF. 
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Fig. 4.14. Variation of )(h  for increased bN values in case of PEST.  

 

 

 

 

 

Fig. 4.15. Variation of )(h  for increased bN values in case of PEHF.  
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Fig. 4.16. Variation of fC  for increased K values. 

 

             

 

 
         

Fig. 4.17. Variation of Nu  for increased bN  values. 

 

          

 

          

 



59 

 

 

 

 
     Fig. 4.18. Variation of Sh  for increased Le  values. 

 

         

 

Table 4.2. Comparison value of fC  for different values of  and  wv  . 

       

 Ali et al. (2021) Present results 

𝜆 𝑣𝑤 = 0.10 𝑣𝑤 = 0.20 𝑣𝑤 = 0.10 𝑣𝑤 = 0.20 

0 1.23638 1.19298 1.23637 1.19298 

0.1 1.20710 1.16468 1.20710 1.16466 

0.2 1.17482 1.13365 1.17485 1.13365 

0.3 1.13825 1.09881 1.13825 1.09880 
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Chapter 5 

 

 
 

Mixed Convection Flow of Williamson Nanofluid over an 

Exponentially Stretching Surface in the presence of 

Magnetohydrodynamics 

 

 
5.1 Introduction 

 

 
       In this chapter, the Williamson nanofluid flow over a surface stretching in an exponential form 

is observed. The heat and also mass transfer examination is performed in the existence of 

magnetohydrodynamics, chemical reaction, heat generation/absorption and viscous dissipation. 

The fluid characteristics are also influenced due to the effect of mixed convection. The governing 

equations are modelled as a system of partial differential equations and are then converted into a 

system of ordinary differential equations with the aid of similarity transformations. The velocity, 

temperature and in addition concentration distributions are examined for various important 

parameters. Furthermore, the graphical influence of different parameters are studied for skin 

friction, Nusselt number and Sherwood number. The comparative analysis performed in case of 

obtained results is in accordance with the already existing literature. 
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Fig. 5.1. Geometry of the Problem. 

           

                 

5.2 Mathematical modelling 

 

       This part inspects steady and two-dimensional flow for an incompressible Williamson 

nanofluid due to the occurrence of mixed convection. The considered flow is instigated by a porous 

surface stretching exponentially along the x-axis and possesses velocity wU . An inclined magnetic 

field with intensity 0B is applied at an angle  to the considered surface. The flow is further 

influenced by the appearance of heat generation/absorption, chemical reaction and viscous 

dissipation. The fluid's velocity, its temperature and the relevant nanoparticle concentration close 

to the surface are assumed in this case to be wU , wT   and wC respectively. The necessary governing 

equations for the considered flow model are given as  

∇. v⃗ = 0, (5.1) 
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 d


v

dt



.


S 


b ,   #   
                                                      

cpf
dT
dt

 . k


 T  cp p
DB



 C.


 T  DT

T



 T.


 T Q0T  T 

.



L ,   #   
               

                         ),().( 









 CCR
T

T
DCD

dt

dC
TB                     

where v⃗ = [𝑢 ̃(𝑥, 𝑦), �̃�(𝑥, 𝑦), 0] is noted for velocity, 


S for stress tensor, for nanofluid density, 

fpc )(  and ppc )(  for heat capacities of the fluid and added nanoparticles respectively, T for 

temperature,
BD for Brownian diffusion coefficient, 𝑄° for heat generation coefficient , C for 

nanoparticle volumetric fraction, 
TD for thermophoretic diffusion coefficient, 

C for ambient 

nanoparticles volume fraction and  
T for the ambient fluid temperature. 

Williamson fluid holds Cauchy stress tensor S


 defined to be Nadeem et al. [95]. 

, S 





Ip  

Where 


  

0  
1  

.


A1 ,   #   

                                                               

where   is symbolized for extra stress tensor, 0 for limiting viscosity relative to zero shear rate,  

 for limiting viscosity relative to infinite shear rate and 0   for shear stress. It is needed to 

express 
.
   as 

,
2

1.

   

 

),( 2

1Atrace  

Taking  0   and  1
.

  , we have 

.]1[ 1

1
.

0 A 


 

The extra stress tensor in component form are 

 (5.2) 

(5.3) 

         (5.4) 

   (5.5) 

    (5.6) 

  (5.7) 

  (5.8) 

  (5.9) 
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xx  201  
.
 ũx

,

xy  yx  201  
.
 ũy

 ũ
x
,

yy  201  
.
 ũy

,

  #   

 

and  .0 zzzyzxyzxz    

The crucial aspects of electromagnetic force is stated to be  

 

J  × B⃗⃗ = −𝜎𝐵°
2𝑠𝑖𝑛2𝛽�̃�, 

where 0B  is represented for applied magnetic field,   for electrical conductivity and


E for electric 

field. 

Making use of above Eqs. in  ),4.51.5(    we get the following equations under the boundary 

layer theory 

,0
~~











y

v

x

u
 

 

�̃�
𝜕�̃�

𝜕𝑥
+ �̃�

𝜕�̃�

𝜕𝑦
= 𝜈

𝜕2�̃�

𝜕𝑦2
+ √2𝛤

𝜕�̃�

𝜕𝑦

𝜕2�̃�

𝜕𝑦2
− 𝜈

�̃�

𝑘1
−

𝜎𝐵2

𝜌
𝑠𝑖𝑛2𝛽�̃� 

+𝑔𝛽𝑇(𝑇 − 𝑇∞) + 𝑔𝛽𝑐(𝐶 − 𝐶∞), 

 

�̃�
𝜕𝑇

𝜕𝑥
+ �̃�

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2
+

𝑄0

(𝜌𝑐𝑝)𝑓

(𝑇 − 𝑇∞) +
(𝜌𝑐𝑝)𝑝

(𝜌𝑐𝑝)𝑓

[𝐷𝑩

𝜕𝑇

𝜕𝑦

𝜕𝐶

𝜕𝑦
+

𝐷𝑇

𝑇∞
(
𝜕𝑇

𝜕𝑦
)
2

+
𝜇

(𝜌𝐶𝑝)𝑓
(
𝜕�̃�

𝜕𝑦
)2], 

 

ũ C
x

 v C
y

 DB
2C

y2
 DT

T

2T

y2
 RC  C.   #   

 

The necessary conditions for above equations can be stated as Li et al. [96]. 

).(,~
0 xveUUu ww

l

x

  

 

 

 

    (5.10) 

             (5.11) 

           (5.12) 

(5.14)   

(5.15) 

 (5.13)         

(5.14) 

         (5.15) 

      (5.16) 
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For PEST case:  

T  Tw  T  Tw  Te
x

2l , C  Cw at y  0,
 

For PEHF case. 

 k T
y

w

 Tw  Te
x
l , C  Cw at y  0,

 

and the conditions when y   are 

.,,0~
  CCTTuu e  

In above stated expressions 1u and 1v are characterized for velocity components in orthogonal 

directions, 0U for reference velocity,  for fluid's density,   for electrical conductivity,  for 

thermal diffusivity, 1k for permeability of the porous medium,  for kinematic viscosity, 𝛽𝑇 for 

temperature expansion coefficient and 𝛽𝑐 for concentration expansion coefficient. 

  Exercising the succeeding transformations Lie et al. [96]. 

.
2

)],()([(
2

),(~

2

2

0

l

x

l

x

l

x

ye
vl

U

ffe
l

U
v

feUu

w


















 

Case for PEST: 

T  T  Tw  Te
x

2l ,

h  C  C
Cw  C

.   #   
 

Case for PEHF: 

T  T  Tw  T
k

e
x

2l
2vl
U 

,

h  C  C
Cw  C

.   #   
 

Applying similarity transformations )13.59.5(   in equations )5.53.5(   we get 

   (5.17) 

    (5.18) 

     (5.19) 

     (5.20) 

    (5.21) 

   (5.22) 

 (5.23) 
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.0)sin()(2 22  hGrGrfMKffffff ct  

PEST case 

  ,0''Pr 22  EcfQNhNff tb   

 

PEHF case 

   ,0''Pr 22  EcfQNhNff tb   

.0)(Pr  
b

t

N

N
hhfLeh  

and the boundary conditions become, 

. 0)(  ,1)0(  ,)0(  ffvf w  

The requisite conditions for PEST are 

, 0)(  ,1)0(  ,0)( ,1)0(  hh  

and for PEHF are 

,  0)( ,1)0( , 0)(  ,1)0(  hh  

where   is indicated for Williamson parameter, K  for porosity parameter, Pr  for Prandtl number, 

Ec for Eckert number, tGr  for temperature Grashof number, cGr for concentration Grashof 

number, M  for Hartmann number, tN and bN  for Brownian and thermophoresis motion 

parameter, Q  for heat source parameter, Le  for Lewis number and   for chemical reaction 

parameter. These parameters are demonstrated as follows: 

 

  (5.24) 

  (5.25) 

  (5.26) 

(5.27) 

(5.28) 

(5.29) 

(5.30) 

0.)(Pr  
b

t

N

N
hhfLeh
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  

l
U 

3/2
e

3x

2l , M  2B 
2l

U0
e

x
l , K  2vl

k1U 
e

x
l ,

  2Rl

U
e

x
l , Ec 

U0
2

CpfTwT
e

3x

2l , Pr  v
 ,

Grc  2cglv2

U 2
Cw  Ce

2x
l , N t,

DT

T

Cpp

Cpf

TwT
 e

x
l ,

Nb  DB


Cpp

Cpf
Cw  C, Q  Q

Cpf

2l

U 
e

x
l ,

Le  
DB

, Grt 
2Tgl 2

U0
2v2

Tw  Te
x
l .

  #   

 

         The skin friction coefficient, the Sherwood number  Sh   and 1ocal Nusselt number ( )xNu  

are defined as 

C f 
w

Uw
2

, Nux 
xqw

kTw  T
, Sh 

xqm

DBTw  T
,   #   

 

 

w   u1

y
 

2
 u1

y
2

y0

, qw  k T
y

y0

, q n  DB
C
y

y0

,   #   

 

 

2Rex1/2C f  f   
2

f 20 , e
x

2l 2Rex1/2Nu   0,   #   
 

,)0()Re2( 2/12 hShe x
l

x


 

where  
l
exU l

x

2

2

Re   . 

 

5.3  Homotopic solution 

          The requisite initial guesses f0 ,0 ,h0 and associated linear operators  ( ℒ𝑓 , ℒ𝜃 , ℒℎ) for 

the momentum, energy and also concentration equations can be adopted in the following way: 

f0  1  vw  exp, 0  exp, h0  exp,   #   
 

(5.31) 

(5.32) 

(5.33) 

     (5.35) 

(5.34) 
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Lf f 
d3 f

d3
 df

d
, L   d2

d2
 , Lh h  d2h

d2
 h,   #   

 

and 

Lf b1  b2 exp  b3 exp  0,   #   
 

L b4 exp  b5 exp  0,   #   
 

Lh b6 exp  b7 exp  0,   #   
 

where ib  71i   give arbitrary constants. 

The problems relative to zeroth and nth orders are stated as: 

            

5.3.1  Zeroth-order problem (PEST case) 

 

 

                              
1  r Lf


f ;r  f0  rf Nf


f ;r ,   #   

   

                 
1  r L


;r  0  r N


f ;r,


;r,


h;r ,   #   

  

              
1  r Lh


h;r  h0  rh Nh


f ;r,


;p,


h;r ,   #   

 


f 0;r  vw,



f


0;r  1,



f


;r  0,   #   

 


 0;r  1,


;r  0,   #   

 


h0;r  1,


h;r  0,   #   

 

   (5.36) 

   (5.37) 

  (5.38) 

   (5.39) 

     (5.40) 

   (5.41) 

       (5.42) 

     (5.43) 

   (5.44) 

(5.45) 
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Nf


f ;r,


;r,


h;r 

3

f ;r

3
 2



f ;r


2



f ;r 

2

f ;r

2


 3

f ;r

3

2

f ;r

2
 K  Msin2 


f ;r


Grt


;r  Grc


h;r

,   #   

 

N

f ;r,


;r,


h;r 

2;r

2
 Pr


f ;r 


;r
  Pr



f ;r



;r

PrNb


h;r




;r
  PrN t



;r


2

PrQ

;r  PrEc

2

f ;r

2

2

,   #   

 

Nh


f ;r,


;r,


h;r 

 2

h;r

2
 LePr


f ;r 


h;r


PrLe

h;r  Nt

Nb

2;r

2

,   #   

 

For the above equations  ,f  , h   are the auxiliary parameters and ].1,0[r   

 

 5.3.2  nth-order problem 

 

Lf fn  n fn1  fRn
f ,   #   

 

L n  nn1  Rn
 ,   #   

 

Lh hn  nhn1  hRn
h ,   #   

 

fn0  fn
 0  fn

   0,   #   
 

n 0  n   0,   #   
 

hn 0  hn   0,   #   
 

(5.46) 

   (5.47) 

   

(5.48) 

 (5.49) 

  (5.50) 

 (5.51) 

(5.52) 

(5.55) (5.53) 

 (5.54) 
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Rn
f   fn1

  


k0

n1
2fn1k

 fk
  fn1kfk

  f
n1k

 fk


K  Msin2fn1
 ,Grt n1  Grchn1 ,

,   #   

 

Rn
   n1

   Pr
k0

n1
fn1kk

  fn1kk


 Nbn1k

 hk


N tn1k
 k

  Ecfn1k
 fk


 PrQn1 ,   #   

 

Rn
h   hn1

  
k0

m1

LePr fn1khk
   LePrhn1 

N t

Nb

n1


 ,   #   

 

n 
0, n  1,

1, n  1.
  #   

 

 0r  and 1r correspond to 


f ;0  f0,


f ;1  f ,   #   

 

 ;0  0,

;1   ,   #    


h ;0  h0,


h;1  h .   #   

 

As r changes increases from 0 to1  , then 


f ;r,


;rand  


h;r  modifies from  ,0 f   0  

and )(0 h  to 𝑓(𝜂), 𝜃(𝜂) and )(h  respectively. Taylor series expression with regard to the 

parameter r  results in the following forms. 


f ;p  f0 

n1



fnrn , fn  1
n!

n

f ;r
rn

r0

,   #   

 


 ;r  0 

n1



nrn . n  1
n!

n

;r
rn

r0

,   #   

 


h ;r  h0 

n1



hnrn , hn  1
n!

n

h;r
rn

r0

.   #   

 

 (5.55) 

(5.56) 

(5.57) 

(5.58) 

        (5.59) 

      (5.61) 

  (5.62)       (5.60) 

      (5.62) 

     (5.63) 

    (5.64) 



70 

 

Choosing the values of the auxiliary parameters to obtain the convergence at 1r   results in 

f   f0 
n1



fn,   #   

 

   0 
n1



n,   #   

 

h   h0 
n1



hn.   #   

 

The obtained solutions  nnn hf ,, , of the Eqs. )50.548.5(  are illustrated as 

fn   fn
   b1  b2e  b3e,   #   

 

n   n
   b4e  b5e,   #   

 

hn   hn
   b6e  b7e,   #   

 

which express the constants ib  )81( i  utilizing boundary conditions )3.551.5(   are given by 

b2  b4  b6  0, b3 
fn


 0

 1, b1  vw  fn
0,

b5  1  n
0, b7  hn

0.   #   
  

 

5.3.3  Zeroth-order problem (PEHF case) 

 

 

1  rLf


f ;r  f0  rfNf


f ;r,


;r,


h;r ,   #   

 

1  rL

;r  0  rN


f ;r,


;r,


h;r ,   #   

 

1  rLh


h;r  h0  rhNh


f ;r,


;r,


h;r ,   #   

 

   (5.66) 

   (5.65) 

 (5.67) 

  (5.68) 

(5.69) 

  (5.70) 

      (5.71) 

     (5.72) 

 (5.73) 

(5.74) 
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
f 0;r  vw,



f


0;r  1,



f


;r  0,   #   

 






0;r  1,

;r  0,   #   

 


h0;r  1,


h;r  0,   #   

 

Nf


f ;r,


;r,


h;r 

3

f ;r

3
 2



f ;r


2



f ;r 

2

f ;r

2


 3

f ;r

3

2

f ;r

2
 K  Msin2 


f ;r


Grt


;r  Grc


h;r

,   #   

 

N

f , r,


, r,


h, r 

2

;r

2
 Pr


f ;r 


;r
  Pr



f ;r



;r

PrNb


h;r




;r
  PrN t



;r


2

PrQ

;r  PrEc

2

f ;r

2

2

,   #   

 

Nh


f ;r,


;r,


h;r 

 2

h;r

2
 Le Pr


f ;r 


h;r


Pr

h;r  Nt

Nb

2;r

2

,   #   

 

Stating that  ]1,0[r   represents embedding parameter. 

 

  5.3.4 nth-order problem 

Lffn  n fn1  fRn
f ,   #   

 

Ln  nn1  Rn
,   #   

 

Lhh  nhn1  hRn
h,   #   

 

(5.75) 

(5.76) 

(5.77) 

(5.78) 

 (5.79) 

(5.80) 

     (5.81) 

 (5.83) 

   (5.82) 
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fn0  fn
 0  fn

   0,   #   
 

n0  n  0,   #   
 

hn0  hn  0,   #   
 

n
f   fn1

  


k0

n1
2fn1k

 fk
  fn1kfk

  f
n1k

 fk


K  Msin2fn1
 ,Grt n1  Grchn1 ,

,   #   

 

Rn
  n1

   Pr
k0

n1
fn1kk

  fn1kk


 Nbn1k

 hk


N tn1k
 k

  Ecfn1k
 fk


 PrQn1 ,   #   

 

Rn
h   hn1

  
k0

n1

LePr fn1khk
   N t

Nb

n1


,   #   

 

n 
0, n  1,

1, n  1.
  #   

 

At 0r   and  1r , 


f ;0  f0,


f ;1  f,   #   

 


;0  0,


;1  ,   #   

 


h;0  h0,


h;1  h.   #   

 

As  r  varies from 0 to 1  , then 


f ;r,


;r  and 


h;rchange from guesses  ,0 f   0   and  

h0  to the 𝑓(𝜂), 𝜙(𝜂) and )(h  respectively. Using Taylor series expansion, 


f ;r  f0 

n1



fnrn , fn  1
n!

n

f ;r
rn

r0

,   #   

 

   (5.84) 

   (5.85) 

     (5.86) 

 (5.87) 

  (5.88) 

      (5.89) 

      (5.90) 

          (5.91) 

            (5.92) 

            (5.93) 

          (5.94) 

     

, 
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
;r  0 

n1



nrn , n  1
n!

n

;r
rn

r0

,   #   

 


h;r  h0 

n1



hnrr, hn  1
n!

n

h;r
rn

r0

.   #   

 

Choice of the auxiliary parameters leads to the convergence of  )96.594.5(   at 1r   and 

f  f0 
n1



fn,   #   

 

  0 
n1



n,   #   

 

h 0  
n1



hn.   #   

 

The general solutions of the Eqs. )82.580.5(   is expressed as 

fn  fn
  b8  b9e  b10e,   #   

 

n  n
  b11e  b12e,   #   

 

hn  hn
  b13e  b14e,   #   

 

in which the constants ib )118( i   through the boundary conditions )85.583.5(   are given by 

b9  b11  b13  0, b10 
fn


 0

 1, b8  v w  b10  fn
0,

b12  1 
n


 0

, b14  1  hn
0.   #   

 

 

 

 

 

           (5.95) 

        (5.96) 

    (5.97) 

   (5.98) 

        (5.99) 

      (5.100) 

     (5.101) 

        (5.102) 

(5.103) 
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5.4  Analysis 

 

5.4.1  Convergence of solution 

 

            The methodology greatly rely on the correct choice of the auxiliary parameter which can 

be achieved. For this, convergence region is obtained by plotting three  ℏ -curves for the equations 

displayed in Figs. 2.5 & 3.5 . The permissible ranges of the auxiliary parameters ℏ𝑓 ,  ℏ𝜃,   ℏ∅, and 

 ℏℎ   can be clearly seen through these  ℏ-curves. These plots guarantee the convergence of the 

series solution. The following ranges of auxiliary parameters are gained.  

 

PEST case: 

 0.97  f  0.3,  0.98    0.18,  1  h  0.3.   #   
 

PEHF case: 

 0.9  f  0.3,  1    0.3,  0.97  h  0.25.   #   
 

 

Table 5.1. Convergence for the solution when  

,,1,1,5.1,1.0,1,1
4
  ct GrGrKMQ  ,1.0,5.1  Ecvw    

2.0,5.1Pr,1  tb NN  and 5.0  . 

Order of approximation f 0  0 PEST case  0 PEHF case h0

1 -1,28750 -1.16667 -1.28750 -0.52417

5 -1.50637 -1.28571 -1.30102 -0.27391

10 -1.54249 -1.35012 -1.35012 -0.71751

15 -1.58246 -1.35013 -1.37012 -0.71862

20 -1.58247 -1.35013 -1.37112 -0.82463

25 -1.58249 -1.35013 -1.37112 -0.82463

30 -1.58249 -1.35013 -1.37112 -0.82463
 

 

(5.104) 

(5.105) 
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Fig. 5.2.  ℏ-curves for PEST case. 

 

 

Fig. 5.3.  ℏ-curves for PEHF case. 
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5.5  Graphical Results and Discussion 

 

 

          The response of velocity, temperature and concentration distributions in terms of various 

dimensionless quantities for steady, Williamson nanofluid flow is analyzed when the surface over 

which the fluid is flowing is stretching exponentially and different considered factors control the 

flow. The outcomes are derived in the form of graphical illustration for the dimensionless 

parameters. Fig. 5.4. depicts the velocity distribution )(f  and thickness of the boundary layer for 

increased values of inclined magnetic field angle  . It is evident from the figure that velocity 

profile decreases when increased values of  are incorporated. The conduct of magnetic parameter 

given by M on velocity distribution is apparent in Fig. 5.5. Through which a decreasing velocity 

profile is noticeable for larger magnetic parameter's values. This is in line with the fact that raised 

magnetic parameter brings resistance to the fluid motion due to Lorentz force, thus decreasing the 

profile. Figs. 5.6 and 5.7 elucidate the outcome of varying thermal Grashof number on the velocity

)(f  . A rise in value of Grashof number tGr and cGr amplifies the velocity profile. Figs. 5.8 to 

5.11 indicate the variation of Grashof number tGr and cGr on temperature profile 𝜃(𝜂). Increasing 

values of tGr and cGr reduce temperature distribution 𝜃(𝜂).The impact of cGr instigate a similar 

pattern to that of tGr on all profiles and for geometries. The change in Prandtl number Pr and its 

result for temperature distribution is seen in Figs. 5.12 and 5.13. For higher Prandtl number's 

values, the temperature appear to lessen down for both PEST and PEHF case. The reason behind 

this lies in the decrease of thermal diffusivity since Prandtl number and thermal diffusivity are 

related inversely with each other. When compared the results for PEST case and PEHF case, the 

later experiences somewhat more influence of Prandtl number for the same values. The 

temperature distribution )( for elevated heat source values Q is sketched in Figs. 5.14 & 5.15 

for the considered cases. It is analyzed that in PEST and even in PEHF case, the profile elevated 

with the rising values of heat source Q . The variation in thermophoresis motion parameter tN
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relative to temperature profile )(  is presented through Figs. 5.16 & 5.17. Here the temperature 

profile )( enhances for tN  for the dual cases. The changing Eckert number Ec for temperature 

is seen through Figs. 5.18 & 5.19. These figures indicate that when Ec  increases, temperature and 

related thickness of boundary layer rise for both cases. From figure, it is clear that heat is generated 

within the fluid as value of Eckert number enhances. The frictional heating is the main cause of 

this phenomenon, so the fluid temperature increases with higher Eckert number. In general, Eckert 

number is demonstrated as the percentage of kinetic energy with specific enthalpy difference 

calculated between the wall and fluid. Thus, the work that is done as the Eckert number increases 

raises the liquid's temperature by transforming the kinetic energy to internal energy. The thermal 

energy is saved within the fluid as the Eckert number rises as a result of frictional or drag forces, 

increasing the temperature profile. The concentration profile )(h  for Brownian motion parameter

bN values have been acquired through the Figs. 5.20 & 5.21. It is noticed that intensifying the values 

of bN brings down the mass transfer rate, since through enhancement of  ,bN  the haphazard 

movement of tiny particles amplifies, thus reducing mass transfer rate. The concentration profile

)(h for increasing Lewis number Le  is displayed in Figs. 5.22 & 5.23. In both cases, it can be 

perceived that concentration )(h   is remarkably reduced by increasing Lewis number. Figs. 5.24 

& 5.25 are plotted for the chemical reaction parameter   versus concentration profile )(h . In 

both PEST and PEHF case, a declined concentration profile is noticeable from the figures. 

Growing values of cause mass concentration to decline. The reason is that, the number of 

molecules experiencing chemical reaction lead to decrease in fluid concentration. From the figures, 

it can be observed that PEST case shows more prominent results than PEHF case. 

The skin friction coefficient, being an important parameter is investigated through different 

findings. It is plotted for different values of porosity parameter K  with increasing mass suction 

and the outcomes are shown graphically in Fig. 5.26 which shows the reduced drag for intensified 

porosity parameter K  and the same is observed for the case of suction. Fig. 5.27.  Show the 

behavior of local Nusselt number on Eckert number 𝐸𝑐. With increasing values of Eckert number 

reduce the local Nusselt number. The impact of 𝑆ℎ number for different values of chemical 

reaction parameter is displayed in Fig. 5.28. Table 5.1 manifests the convergences of series 

solutions. The convergent solution for 𝑓′′(0) is obtained at the 30th order of approximation, for 
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𝜃′(0) it can be seen of the 20th order of approximation, for 𝜙′(0) at 15th order of approximation 

and for ℎ′(0) at the 25th order of approximation. The numerically calculated values of the skin 

friction coefficient are also calculated and compared with the existing work done by Ali et al. [33] 

in Table 5.2. These numerical values of fC are obtained using the same parametric values of exiting 

research work. Considering this table, we can state that our findings and those of Ali et al. [33] are 

in perfect harmony.    
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Fig. 5.4. Variation of profile )(f  for increased  values. 

 

 

 
Fig. 5.5. Variation of profile )(f   for increased M values. 
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Fig. 5.6. Variation of profile )(f   for increased tGr  values. 

 

 

Fig. 5.7. Variation of profile )(f   for increased cGr  values. 
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Fig. 5.8. Variation of profile )(  for increased tGr values in case of PEST. 

 

 

 

 

Fig. 5.9. Variation of profile )(  for increased tGr values in case of PEHF.  
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Fig. 5.10. Variation of profile )(  for increased cGr values in case of PEST. 

 

 

 

 

Fig. 5.11. Variation of profile )(  for increased cGr values in case of PEHF.  
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Fig. 5.12. Variation of profile )(  for increased Pr  values in case of PEST. 

 

   
Fig. 5.13. Variation of profile )(  for increased Pr values in case of PEHF.  
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Fig. 5.14. Variation of profile )(  for increased Q values in case of PEST.  

 

 
Fig. 5.15. Variation of profile )(  for increased Q values in case of PEHF.  
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Fig. 5.16. Variation of profile )(  for increased tN  values in case of PEST. 

             

     

  

Fig. 5.17. Variation of profile )(  for increased tN  values in case of PEHF.  
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Fig. 5.18. Variation of profile )(  for increased Ecvalues in case of PEST.  

 

 

 

 
Fig. 5.19. Variation of profile )(  for increased Ec  values in case of PEHF.  
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Fig. 5.20. Variation of profile )(h  for increased bN values in case of PEST.  

 

 

Fig. 5.21. Variation of profile )(h  for increased bN values in case of PEHF.  
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Fig. 5.22. Variation of profile )(h  for increased Le  values in case of PEST. 

 

 

     
Fig. 5.23. Variation of profile )(h  for increased Le  values in case of PEHF.  
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Fig. 5.24. Variation of profile )(h  for increased  values in case of PEST.  

 

 
Fig. 5.25. Variation of profile )(h  for increased  values in case of PEHF.  
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Fig. 5.26. Variation of  fC  for increased K values. 

          

     

  

       

 
Fig. 5.27. Variation of Nu for increased 𝐸𝑐 values 
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Fig. 5.28. Variation of Sh  for increased 𝛾 values. 

 

 

Table 5.2. Comparison results of fC  for different values of  and wv  . 

                                                                                                                 

 Xia et al. (2021) Present results 

𝜆 𝑣𝑤 = 0.10 𝑣𝑤 = 0.20 𝑣𝑤 = 0.10 𝑣𝑤 = 0.20 

0 1.23638 1.19298 1.23637 1.19298 

0.1 1.20710 1.16468 1.20710 1.16466 

0.2 1.17482 1.13365 1.17485 1.13365 

0.3 1.13825 1.09881 1.13825 1.09880 
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Chapter 6 

 

 

Conclusion 

 
 

 

6.1  Conclusions 

 
         The ongoing study is executed to examine the heat and also mass transfer phenomenon in 

Williamson nanofluid flow instigated due to a porous surface stretching with velocity in 

exponential form. Two different cases of heat and mass transfer i.e., PEST and PEHF have been 

explored. The fluid model is influenced due to inclined magnetic field and heat 

generation/absorption. Further, the mixed convection flow is investigated for a Williamson 

nanofluid with the existence of an inclined MHD, chemical reaction and heat 

generation/absorption. The flow is investigated through homotopy analysis method (HAM) is used 

to secure the key findings mentioned as follows. 

The velocity lessens down when values of   and M  jump up. The velocity distribution increases 

with increasing values of 
tGr  and .cGr  For consideration of PEST and PEHF, the temperature 

distribution strengthens by raising the values of tNEc,  and Q . Temperature distribution 

diminishes for the enhanced values of  Pr  , tGr  and cGr  for PEST and PEHF considered cases. 

The increasing values of bNLe, and   leads to reduce concentration distributions. Huge values 

of K  and  wv result in less friction drag .  Nu lowers down with the improved values of bN  and 

the opposite is seen for wv  .The increasing values of  Le  is associated with higher Sherwood 

number Sh  . 
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6.2  Future work 

 

         Within this work, the effects of mixed convection for Williamson nanofluid flowing by an 

exponentially stretching surface with the existence of magnetohydrodynamics have been analyzed 

with few considered assumptions. However, this carried out research provides a pathway towards 

more interesting works. The following are a few intriguing potential works that might be 

fascinating in the future. 

The research can be extended for any other non-Newtonian fluid with suitable boundary 

conditions. The rotating Williamson nanofluid flow over a Riga surface with activation energy can 

be looked into. Bio-convection effects on three dimensional Williamson nanofluid flow between 

circular plates can also be explored. 
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