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In this research, derivative free and with memory iterative methods involving self-

accelerating parameters have proposed for the solution of distinct roots of single vari-

able non-linear equations. The technique of obtaining self-accelerating parameters is

based on forth order iterative methods developed by Wang and Fan [16]. A very sim-

ple strategy has been used to construct two iterative methods using self-accelerating

parameters which improve the convergence order from four to six. Numerical test

examples show that the newly proposed methods are e¢ cient, more accurate and

robust in computation.

                              Abstract
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One of the most interesting problem in engineering, scienti�c computing and ap-

plied mathematics, in general, is the problem of solving a nonlinear equation

q(r) = 0: (1.1)

In most of the cases, whenever real problems are faced, governing equations of the

problems such as weather forecasting, accurate positioning of satellite systems in the

desired orbit, measurement of earthquake magnitudes and other high-level engineering

problems, cannot possibly be solved exactly. In such cases, approximate solutions may

be worked out. Newton Raphson�s method is the most familiar method for obtaining

the solutions of nonlinear equation. It has quadratic convergence order and is an

optimal method with two function evaluations per iterative step by the de�nition of

Kung Traub conjecture.

In last few decades, mathematicians have done lot of work to get more improved

                         Chapter 1
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2

approximate methods not only with higher convergence order but with better ef-

�ciency index also. As the order of convergence increases, so does the number of

function evaluations per step. Hence, a new index to determine the e¢ ciency called

the e¢ ciency index is introduced in order to measure the balance between these

quantities.

The use of a variable self-accelerating parameter is suggested as a new technique

with memory. In order to solve nonlinear equations, a modi�ed Newton technique

without memory with an invariant parameter is �rst built by replacing the Newton

method�s invariant parameter. Using a variable self-accelerating parameter without

memory, a new Newton technique with memory is created. The novel Newton method

with memory has a convergence order of 1+
p
2 without doing any additional function

evaluations. The main advancement is that the self-accelerating parameter is built in

a straightforward manner.

The introduction and convergence study of a new two-parameter family of fourth-

order iterative algorithms for numerically solving nonlinear equations (1.1) were stud-

ied. In the sense of the Kung-Traub conjecture, the new techniques of optimal order

are the best. In many circumstances, the new family of fourth-order optimal tech-

niques is superior to previous well-known and recently published fourth-order optimal

methods, according to numerical experiments that are conducted to incorporate the

theoretical results.

To solve nonlinear equations, iterative methods with memory have been developed
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often in recent years. Some of these techniques employ some variable parameters in

the iteration schemes. These variable parameters, which are computed recursively

while the iteration process proceeds, are known as the self-accelerating parameters.

Data from both the previous and most recent iterations can be used to produce the

self-accelerating parameter, which doesn�t increase the processing costs for iterative

algorithms. As a result, iterative algorithms with memory have extremely high levels

of computational e¢ ciency.

1.1 Signi�cance of Study

The nonlinear equation (1:1) presents a challenge in applied science and engineer-

ing. Using the Colebrook equation to calculate the friction factor, or �guring out the

critical values of a nonlinear function. Another example of how the initial eigenvalue

of the Helmholtz equation can be found by decreasing a function .

A concrete range of real-world problems are considered, such as the path taken by

an electron in the space created by two parallel plates, chemical engineering problem,

the Van der Waal�s equation, which incorporates the behavior of a real gas into the

ideal gas equations, and fractional conversion in a chemical reactor in order to evaluate

the viability, applicability and e¤ectiveness of suggested approaches. Additionally, the

numerical outcomes demonstrate that our suggested procedures beat those now in use

of the same order when the accuracy is assessed in the multi precision digits.

Finding methods to solve nonlinear equations that provide an accurate and ef-
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fective approximation of a nonlinear equation of the type has always been of almost

importance in the �eld of numerical analysis. This topic�s relevance to applied science

and the four main human life domains is one of the primary causes for its prominence.

Chemical, electrical, civil, and mechanical engineering are the four main engineering

specialties. For instance, determining where the external points of a function describ-

ing a certain system that involves critical routes also call for the solution of algebraic

equations, such as the zeros of the derivatives of that function, like �guring out all

the ray pathways. The use of analytical techniques to solve such issues is essentially

nonexistence. Therefore, we must use an iterative approach that can deliver a rough

solution adjusted to a given level of accuracy.

A nonlinear equation that needs to be solved in engineering and applied sciences

is the Colebrook equation, which calculates the friction factor. Finding the critical

values of a nonlinear function is another illustration. Another example of how the �rst

eigenvalue of the Helmholtz issue is found by lowering a functional is given by Ricceri.

The majority of numerical solution techniques are based on Newton�s scheme, which

starts with an initial guess r0 for the root rt and builds a sequence from there using

rn+1 = rn �
q(r)

q0(r)
: (1.2)
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1.2 Technical Approach

Assuming that q : I � R ! R is su¢ ciently di¤erentiable, we investigate the

problem of locating simple roots of nonlinear equations (1.1). Let ro be a �rst ap-

proximation to the simple root of q(r) = 0, with rt being a simple zero. One of

the aims is to build an iterative sequence of approximations frng1o , that converges

to, lim
n!1

rn = rt, with n iterations. Newton�s method, often known as the Newton-

Raphson method, is one of the most popular and well-known iterative procedure. In

the event of convergence, it converges linearly to multiple roots and quadratically to

simple roots. The Newton�s method and some of its variations are used in literature

to either obtain higher order iterative approaches or to accelerate convergence. Since

order four optimal methods combine high order of convergence and low computing

cost, their development is crucial. For the iterative solution of nonlinear equations

of the type q(r) = 0, In this studies, a new family of fourth-order convergent opti-

mal methods utilizing a variation of Newton�s method. The minimal number of new

function evaluations each iteration for fourth-order convergent optimal techniques is

three, which is what the new family necessitates.

In this study, two fast convergence iterative strategies for the solution of a single

nonlinear equation q(r) = 0 with q(r) being a non-di¤erentiable function of r, which

are derivative-free and do not require q(r) for the di¤erential of q(r) are derived.
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1.3 Comparison of Techniques

Studies on this topic subjects are included, Iterative techniques for approximat-

ing various generalized inverses, simple or multiple roots that can be found with or

without derivatives, and real or complex dynamics linked to the rational functions

that are produced when an iterative technique is used on a polynomial function are

all examples of such techniques. Additionally, several adequate criteria for local,

semi local, or global convergence have been used to analyses the convergence of the

suggested approaches. Iterative methods are related to other areas of science and

engineering, as shown by a number of manuscripts on signal processing, nonlinear

integral equations, partial di¤erential equations, or convex programming in addition

to the theoretical works.

Compared to approaches that locate one root at a time, methods for simulta-

neously locating the roots of non-linear equations are fairly well known has further

information on these methods, including their convergence analysis, computational

e¤ectiveness, and parallel implementation. Weierstrass correction is modi�ed ap-

propriately to permit convergence order eight with minimal computational cost and

functional evaluation in each cycle, leading to a very high computational e¢ ciency.

Derivative-free methods are based on Ste¤ensen�s method as the �rst step since mul-

tistep methods are typically based on Newton�s phases. Ste¤ensen�s approach for

simple and multiple roots is the foundation for a number of derivative-free proce-

dures. For a family of such multiple root approaches and for simple roots: In a recent
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article, Neta [1] demonstrated that, although not being second order, there is a supe-

rior option for a �rst step. Traub�s method [2] is given (2.34), is of order 1:839, and

compared to other derivative free approaches, it runs more quickly and has superior

dynamics. Obviously, this is not how to obtain optimal approaches Kung and Traub

hypothesized that multipoint approaches using the function that may be used without

memory. The order of evaluations could not be more than 2d1. The de�nition of the

e¢ ciency index I as p
1
d . The e¢ ciency index of an ideal order 8 method is therefore

I = 81=4 = 1:6817. as well as having an e¢ ciency index of I = 41=3 = 1:5874, which

is ideal for a technique of order 4 superior to Newton�s technique, when I = p. The

ideal e¢ ciency index is I =
p
2 = 1:4142.

These techniques in particular, useful when evaluating the derivative will cost a

lot of money and, of course, when the function is not distinguishable. Here, based

on Traub�s method, we create a derivative-free method with memory the derivative

with the derivative as the �rst step, and the derivative as the basis for steps two and

three of Newton interpolating a degree 3 polynomial. Researchers are now taking

derivative free simultaneous approaches into consideration for more information. The

major objective of this study is to provide a derivative-free method for identifying

distinct roots of nonlinear equation.
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1.4 Historical Background

It is a di¢ cult undertaking involving many branches of science and technology to

solve nonlinear equations in any Banach space, including real or complex nonlinear

equations, nonlinear systems, and nonlinear matrix equations. Usually, the solution is

out of reach and calls for an iterative algorithmic technique. Over the past few years,

research in this �eld has expanded dramatically. The design, analysis of convergence,

and stability of new iterative strategies for addressing nonlinear problems, as well as

their application to real-world issues, are the key topics of this research.

In order to build the self-accelerating parameter, Dzunic et al. [3] presented var-

ious e¢ cient self-accelerating type methods. The amount of self-accelerating para-

meters or the use of high-degree interpolation polynomials to create self-accelerating

parameters can both signi�cantly improve the convergence order and computational

e¢ ciency of self-accelerating type algorithms. The use of higher order self-accelerating

techniques to solve nonlinear equations has increased recently useful tri-parametric

iterative method produced a self-accelerating parameter utilizing a Newton interpola-

tion polynomial. Using four self-accelerating parameters, Lot�and Assari [4] achieved

a derivative-free iterative technique with an e¢ ciency index close to 2. In addition,

an e¤ective iterative approach with n self-accelerating parameters is presented which

may be seen as a particular instance of some well-known methods :Cordero et al.

[5] and Campos et al. [6] created several novel self-accelerating type approaches to

investigate the stability of their methods . In order to evaluate the stability of their
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methods: Cordero et al. [5] and Campos et al. [6] developed a number of innovative

self-accelerating type approaches. Utilizing a Newton interpolation polynomial, Zaka

et al :[7] helpful tri-parametric iterative approach created a self-accelerating parameter

and provided a powerful iterative method with n self-accelerating parameters, which

may be viewed as a speci�c application of some well-known techniques. First, a modi-

�ed optimal fourth-order technique is suggested for solving nonlinear equations based

on Ren�s method [8]. Then, using a self-accelerating parameter, the modi�ed iterative

technique is expanded into a new self-accelerating type method. The self-accelerating

parameter is built using the interpolation approach, and the new method�s conver-

gence order is 4:2361. An approach is used to build the self-accelerating parameter

modify this method with maximum convergence order 4:4495. Numerical examples

are provided to support the theoretical �ndings.

It is common knowledge that several problems in various branches of research and

engineering call for the solution of the nonlinear equation (1.1) where q : I ! D is

a scalar function for the intervals I � R and D � R. The most popular procedures

are iterative ones, including Newton�s method, Halley�s method, Cauchy�s method,

and so forth. Thus, one of the most crucial parts in contemporary researches is the

development of iterative algorithms based on these iterative methods for locating the

roots of nonlinear equations. To solve a single nonlinear equation, some iterative ap-

proaches with high-order convergence have recently been developed. These iterative

methods can be built using a variety of approaches, including Taylor series, quadra-
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ture formulas, decomposition techniques, continuous fraction, Padé approximation,

homotopy methods, Hermite interpolation, and clipping techniques. For instance,

there are many ways of introducing Newton�s method. Among these ways, using

Taylor polynomials to derive Newton�s method is probably the most widely known

technique. Weerakoon and Fernando [9] use the trapezoidal quadrature formulae

to derive an implicit iterative scheme with cubic convergence , where as Cordero

and Torregrosa [10] create several adaptations of Newton�s method using �fth order

quadrature principles. Both groups take into account various quadrature formulas

to compute the integral. Chun [11] presented a set of iterative techniques in 2006

that enhanced Newton�s approach to solving nonlinear equations by employing the

Adomian decomposition technique. A fourth-order convergent iterative technique

based on Thiele�s continuous portion of the function of the Halley�s approach from

the Padé approximation of the function use the divided di¤erences to approximate

the derivatives and leads to a few changes with third-order convergence. For the

purpose of resolving nonlinear algebraic equations Abbas bandy et al. [12] presented

a powerful numerical method based on the Newton-Raphson method and the homo-

topy analysis method. Noor et al. [13] presented and investigated a novel family of

iterative techniques using the homotopy perturbation approach. In 2015, Wang et al.

[14] developed a large family of n-point Newton type iterative techniques for solving

nonlinear equations using direct Hermite interpolation. Additionally, certain e¤ective

univariate root-�nding methods exist for a speci�c class of functions. For example,
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if q is a polynomial, to compute all solutions to the polynomial equation. A degree

reduction-based technique for �nding all univariate polynomial roots is presented in

the literature by Barto et al. [15] and has a higher convergence rate than Newton�s

method. The most well-known and frequently applied iterative approach for root-

�nding issues is arguably Newton�s method. Let�s quickly review how the Newton

iterative technique is derived by using Taylor�s formula for the function q(r):

The oldest challenge in mathematics and engineering in general is to solve the

nonlinear equation (1:1). In numerous branches of science and engineering, nonlinear

equations have a wide range of applications. Author considered an iterative strate-

gies to approximate both the single root and all of the roots in order to identify the

roots and examined both varieties of iterative systems in this research. There are

numerous iterative techniques with various orders of convergence that can be used in

the literature to approximate the roots of Ostrowski determined the e¢ ciency index I

of these iterative approaches as I = k
u
where k is the number of function evaluations

per iteration and u is the order of convergence. The solution of a nonlinear algebraic

problem is one of the subjects that arise frequently in computational mathematics.

The problem can be expressed as a system of nonlinear algebraic equations or as the

scalar case, q(r) = 0. Analytical methods cannot be used to �nd the solutions (as-

suming there are any). Analytical methods occasionally only provide the true result;

the complicated zeros should be identi�ed and reported. Therefore, numerical meth-

ods are a good option for resolving such nonlinear issues. Each of the computational
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methods currently in use has a distinct range of applicability as well as advantages

and disadvantages.

Depending on the application being dealt with, two groups of methods those using

derivatives and those not using them are recognized to be useful . In comparison to

derivative-free methods, which have a smaller area for selecting initial approximations

and require the use of a divided di¤erence operator matrix, or in simpler terms, a

dense matrix, to extend to higher dimensional problems, derivative-involved meth-

ods have a larger attraction basin and easier coding e¤orts. Two kinds of methods

those employing derivatives and those without using them are recognized as useful

depending on the application under consideration. Derivative-involved methods have

a larger attraction basin and require less coding work compared to derivative-free

methods, which have a smaller area for choosing initial approximations and need to

use a dense matrix or to put it another way, a divided di¤erence operator matrix, to

extend to higher dimensional problem.

Take into account the issue of a real simple zero of a function q : D � R ! R.

There are several areas of science and engineering where this problem is well suited

for application. Iterative approaches for the solution of non-linear equations have

been the subject of numerous articles [2], [9].

Two of the oldest iterative techniques for estimating a real or complex function�s

zero are Newton�s and Halley�s methods. The Newton-Raphson method, also referred

to as Newton�s method, iteratively approaches a straightforward real root of the real
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equation q(r) = 0. The well-known recurrence relation results in the generation of a

sequence rn that follows Newton�s method (1.2).

In a region near, the sequence "rn" converges quadratically. Newton�s approach is

without a doubt one of the most e¤ective iterative techniques for non-linear equations.

The most well-known and often used approach is arguably Newton�s method,

which converges to the root quadratically by approximating the root of a nonlinear

equation in one variable using the value of the function and its derivative. To put it

another way, after a certain number of iterations, the process doubles the amount of

valid decimal places or signi�cant digits at each iteration.

The Newton�s method, which approximates the root of a nonlinear equation in

one variable using the value of the function and its derivative, is undoubtedly the

most well-known and often applied method. It converges to the root quadratically.

Or, to put it another way, the method doubles the number of signi�cant digits or

valid decimal places at each iteration after a speci�c number of iterations.

It is demonstrated that the proposed technique converges to the root and that the

order of convergence is at least three in the vicinity of the root whenever the function�s

�rst and higher order derivatives exist in the vicinity of the root; in other words, the

method roughly triples the number of following a few iterations, of signi�cant digits.

The results of computations strongly support this theory, and for some functions, the

computational order of convergence is much higher than three.
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1.5 Self-Accelerating Technique

The self-accelerating type technique is a kind of e¢ cient iterative method with

memory that chooses some variable parameters as self-accelerating parameters in the

iteration processes used to solve nonlinear equations. The computing cost of the iter-

ative method is not increased by using data from both previous and current iterations

to �nd the self-accelerating parameter. As a result, self-accelerating algorithms have

very high processing e¢ ciency.

The self-accelerating parameter is crucial to the self-accelerating type technique

since it can signi�cantly a¤ect how e¤ective the iterative process is. The secant

approach and the interpolation method are the two techniques for constructing the

self-accelerating parameter.

1.6 Objectives of Study

The primary objective in this study is to provide some novel families of Kung�s

Technique approach for solving nonlinear equations of eighth and sixteenth-orders,

which are anticipated to be superior than the existing schemes. The traditional Kung-

Traub theory, developed in 1974, is supported by the presented families of optimal

order. Some essential theorems describing the order of convergence of the suggested

families, and a detailed study of the convergence properties are also given.

� In chapter 2, some useful iterative techniques are studied that are given in
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literature.

� In chapter 3, some basic de�nitions and related concepts are provided to facili-

tate the reader.

� In chapter 4, two with memory iterative methods are constructed for �nding

distinct roots of nonlinear equation based on the Wang and Fan technique [16].

� In chapter 5, numerical discussion of the newly proposed method are presented.

� In chapter 6, some conclusions and future research study in the direction of

construction of more derivative free with memory iterative methods involving

accelerating parameters with better convergence order for �nding the distinct

root of non linear equations.
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In the existing literature related to our topic of study, considerable e¤orts have

been made to construct higher order methods. Several higher-order techniques have

been constructed in order to improve the order of convergence of Newton�s method.

During literature survey, following articles have been studied:

� In 2010, Noor, M. A. et al. [17] used the following three-step iterative approach

to solve nonlinear equations:

sn = rn �
q(rn)

q0(rn)
; (2.1)

tn = sn �
4q(sn)

q0(rn) + 2q0((rn + sn)=2) + q0(sn)
;

rn+1 = tn �
4q(tn)

q0(rn) + 2q0((rn + tn)=2) + q0(tn)
; n = 0; 1; 2; : : :

order of the convergence is 4. Error equation is given by

ern+1 = c
3
2er

4
n +O(er

5
n):

                         Chapter 2

                 Literature Review
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� In 2010, Wang, X. et al. [18] obtained the following three-step Newton�s method

to obtain a higher convergence order and a higher e¢ ciency index than that of

Newton�s method:

sn = rn �
q(rn)

q0(rn)
; (2.2)

tn = sn �
q(sn)

q0(sn)
;

rn+1 = tn �
q(tn)

q0(tn)
:

It is easily proved that scheme (2.2) is eighth-order convergent and it requires six

evaluations of the function and its �rst derivative. Scheme (2.2) has an e¢ ciency

index is 6
p
8 =1:414, which is the same as Newton�s method. In other words,

scheme (2.2) does not increase the computational e¢ ciency. To derive a scheme

with a higher e¢ ciency index, Wang, X. et al. approximate q0(rn), and q0(sn)

using a Hermit interpolation. To approximate q0(sn), and constructed a Hermit

interpolation polynomial H2 (r), that meets the interpolation conditions:

H2(rn) = q(rn);

H2(sn) = q(sn);

H
0

2(rn) = q0(rn);

H2(r) can be written as

H2(r) = lo(r)q(rn) + l1(r)q(sn) + l
�
0 (r)q

0(rn):
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Therefore, a new scheme is derived as follows:

sn = rn �
q(rn)

q0(rn)
;

tn = sn �
q(sn)

2q[rn; sn]� q0(rn)
;

rn+1 = tn �
q(tn)

2q[rn; tn] + q[sn; tn]� 2q[rnsn] + (sn � tn)q[sn; rn; rn]
:

Order of convergence of above method is 8. The error equation meets the

following equations is,

ern+1 = c
2
2(c

2
2 � c3)(c32 � c2c3 + c4)er8n +O(er9n):

� In 2010, Dehghan, M. et al. [19] considered the new iterative method for solving

q(r) = 0 as follows:

rn+1 = rn+
q(rn)(q

0
(rn) + q

0
(r�n+1))

2q0(rn)q
0(r�n+1)

+
2

3

q(rn)

q0((rn) + r�n+1)=2)
� 4
3

q(rn)

q0(rn) + q
0(r�n+1)

(2.3)

where

r�n+1 = rn �
q(rn)

q0(rn)

For an open interval D.

Theorem : let D be a straightforward zero of the su¢ ciently di¤erential function

q : D � R ! R: The approach speci�ed by Equation (2.3) is fourth order if r1 is

su¢ ciently close to �, and its error equation is given by

ern+1 =
9(q

00
(�))3 � (q0(�))2q(4)(�)

72(q0(�))3
er4n +O(er

5
n)
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� In 2012, Wang X. et al. [20] considered the iteration strategy given below:

sn = rn �
q(rn)

�q(rn) + q0(rn)
; (2.4)

rn+1 = sn �
q(sn)


q(rn) + q0(rn)
G(vn);

where �; 
 2 R and G(vn) is a weight function with vn = q(sn)
q(rn)

.

Order of convergence of (2.4) is 4. It complies with the following error equation,

ern+1 = �1=2(c2 + �)(2c3 + c22(�10 +G
00
(0)) + 2c2�(�7 +G

00
(0))

+�2(�4 +G00(0)))er4n + 0(er5n):

� In 2013, Dzunic, J. [21] approached the modi�cation of Newton�s method as

follow:

rk+1 = rk �
q(rk)

q0(wk)
; (2.5)

where wk = rk + 
q(rk) and leads to the new method error equation,

"k+1 = c2�k(2"k;w � "k) +O("3k) = c2(1 + 2
q0(rt))"2k +O("3k):

Order of the method (2.5) is 2.

� In 2014, Jaiswal, J. P. [22] used the concept of inverse function to derive variants

of Newton�s Method (BN). Jaiswal used here inverse function,

r = q�1(s) = g(s)
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instead of s = q(r), to get the following

rn+1 = rn �
(q0(rn) + q

0(sn)q(rn)

q0(rn)q0(sn) +
p
(1 + q0(rn)2)(1 + q0(sn)2)� 1

; n � 0; (2.6)

where

sn = rn �
q(rn)

q0(rn)

The method (2.6) is third order convergent for simple root and its e¢ ciency

index is 31=3 = 1:442:

Function s = q(r) has been used in (2.6). Jaiswal used here inverse function

r = q�1(s) = g(s)

instead of s = q(r) to get the following:

g(s) = g(sn) +

Z s

sn

g0(s)ds; (2.7)

= q(sn) + (s� sn)[
g0(rn)g

0(sn) +
p
(1 + g0(rn)2)(1 + g0(sn)2)� 1

(g0(rn) + g0(sn))
];

where sn = q(rn): Now by using the fact that g0(s) = (q�1)
0
(s) = [q(r)]�1 and

that s = q(r) = 0; obtained the following method:

rn+1 = rn � q(rn)[
1 +

p
1 + q0(rn)2(1 + q0(sn)2)� q0(rn)q0(sn)

(q0(rn) + q0(sn))
]; (2.8)

where sn = rn � q(rn)
q0(rn)

: If the function have su¢ cient number of continuous

derivatives in neighborhood of rt which is simple root of q
0
then the Method

(2.8) has third-order convergence. Error equation meets from the (2.8) is

ern+1 = (
c22

1 + q0(�)2
+
c3
2
)er3n +O(er

4
n):
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� In 2014, Eftekhari, T. et al. [23] main objective to presented some highly e¤ec-

tive multipoint approaches with an index, one can approximate the nonlinear

equation�s root q(r) = 0 the multipoint techniques with memory then become:

wn = rn + �nq(rn); (2.9)

sn = rn �
�nq(rn)

2

q(wn)� q(rn)
;

tn = sn � �k(
q(sn)

q[rn; sn]
); k = 1; 2; 3

rn+1 = tn � (1�
q(tn)

q0(wn)
)�1 � (1� q(sn)

3

q(wn)2q(rn)
)(
q[rn; sn]q(tn)

q[sn; tn]q[rn; tn]
);

where

�n1 = � 1

q0(rt)
= � 1

N
0
3(rn)

�n2 = � 1

q0(rt)
= � 1

N
0
3(rn)

�n3 = � 1

q0(rt)
= � 1

N
0
4(rn)

and

�1 = (1� q(sn)

q(wn)
)�1

�1 = 1� q(sn)

q(wn)
+ (

q(sn)

q(wn)
)2

�
0

3 =
q[rn; wn]

q[wn; sn]

error equation of the method (2.9) which is mentioned above is

ern+1 � cn;8c35D3
n�1;pD

3
n�1;sD

8
n�1;rer

3+3q+3p+3s+8r
n�1 :
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Therefore, the R-order of the methods with memory (2.9), when �n1 is calcu-

lated is at least 10:7202, when �n2 is calculated is at least 11 and when �n3 is

calculated is at least 11:2915.

� In 2016, Maroju, P. et al. [24] presented an eight order family of king�s method.

Considered the following three steps scheme:

sn = rn �
q(rn)

q0(rn)
; (2.10)

tn = sn �
q(rn) + �q(sn)

q(rn) + (� � 2)q(sn)
q(sn)

q0(rn)
; � 2 R

rn+1 = tn �
q(tn)

q0(rn)
G(u; v);

where the above weight function G : C2 ! C; is an analytic function in the

neighborhood of (0; 0) and

u =
q(tn)

q(sn)
; (2.11)

v =
q(sn)

q(rn)
:

Maroju, P. et al. also proved that the following error estimates for given weight

functions that is the quotients de�ned in (2.11) satis�ed the following error

equations

u =
q(tn)

q(sn)
= O(er2n);

v =
q(sn)

q(rn)
= O(ern):
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Order of convergence of the above scheme (2.10) is 8 and error equation is

ern+1 = �
c2((2� + 1)c

2
2� � c3)

2
[c42(4�

3 � 32�2 + 44� + 2�G12 +G12

+(2� + 1)2G20 � 82) + c23(G20 � 2)� 2c4c2 �

c3c22(�4� +G12 + 4�G20 + 2G20 � 30)]er8n +O(er9n):

� In 2019, Shengfeng, Li. et al. [25] used a modi�ed iteration method as shown

below:

tk = rk �
q(rk)

q0(wk)
; (2.12)

rk+1 = rk �
rk � tk

1 + 2q(tk)q02(rk)L�1(rk)
;

where

Lrk = q(rk)(q(rk)q
00(rk)� 2q02(rk)):

It is at least 4-order convergence. The error equation meets the above equation

is :

erk+1 = (b
3
2 � 2b2b3)er4k +O(er5k):

� In 2019, Mir, N. A. et al. [26] constructed an eighth order derivative free

simultaneous method which is more e¢ cient than the similar methods existing

in the literature. Considered the following scheme as given below,

si = ri �
q2(ri)

q(ri + q(ri))� q(ri)
; (2.13)

ti = ri �
q2(ri) + q(si)q(ri)

q(ri + q(ri))� q(ri)
;
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Take well-known two-step fourth order Newton�s method

vi = ri �
q(ri)

q0(ri)
; (2.14)

ui = vi �
q(vi)

q0(vi)
;

Mir, N. A. et al. converted method (2.14) into derivative free simultaneous

method for extracting all the distinct roots of non-linear equation q(r) = 0.

vi = ri �
q(r)

�nj 6=i
j=1

(ri �H(rj�))
; (2.15)

ui = vi �
q(vi)

�nj 6=i
j=1

(vi � vj)
:

The convergence order of method (2.15) is eight.

� In 2019, Chand, B. p. et al. [27] proposed the following two-step method using

a weight function, whose iterative expression is:

sn = rn �
q(rn)

q0(rn)
(2.16)

rn+1 = rn � w(tn)
q(rn) + q(sn)

q0(rn)

where w(tn) = a1 + a2tn + a3t2n and tn =
q(sn)
q0(rn)

: The convergence order of (2.16)

is proved in the following theorem.

Theorem: Let q be a real or complex valued function de�ned in the interval

I having a su¢ cient number of smooth derivatives. Let rt be a simple root

of the equation q(r) = 0 and the initial point r0 is close enough to rt. Then,

the method (2.16) is fourth order of convergence if a1 = 1; a2 = 0 and a3 = 2.



25

Therefore, the error equation of the method (2.16) becomes

ern+1 = (3c
3
2 � c2c3)er4n +O(er5n):

In view of Theorem, the proposed fourth order method is

sn = rn �
q(rn)

q0(rn)
(2.17)

rn+1 = rn � (1 + 2(
q(sn)

q(rn)
)2)
q(rn) + q(sn)

q0(rn)

which requires three function evaluations per iteration and consequently is op-

timal. In addition, the e¢ ciency index of (2.17) is 1.5874.

Using the results obtained in (2.17), proposed a new method de�ned by:

sn = rn �
q(rn)

q0(rn)
(2.18)

rn+1 = rn � (1 + 2(
q(sn)

q(rn)
)2)
q(rn) + q(sn)

q0(rn)

rn+1 = tn � w1(tn)
q(tn)

q0(rn)

where w(tn) = b1 + b2tn is a new weight function and tn is as in (2.16). The

order of convergence is shown in the following result.

Theorem: Let q be a real or complex valued function de�ned in an interval I

having a su¢ cient number of smooth derivatives. Let rt be a simple root of the

equation q(r) = 0 and the initial point ro is close enough to rt. Then, (2.18)

has a sixth order of convergence if b1 = 1 and b2 = 2:

The error equation of the (2.18) is

ern+1 = c2(18c
4
2 � 9c22c3 + c32)er6n +O(er7n):
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� In 2019, Khdhr, F. W. et al. [28] suggested an e¤ective bi-parametric iterative

method with memory as follows:

wk = rk �Bkn = q(rk); (2.19)

Bk =
1

N 0
4(rk)

; �k =
N 000
5 (wk)

2N 0
5(wk)

; k � 2

rk+1 = rk �
q(rk)

q[rk;wk]
(1 + �k)

q(wk)

q[rk;wk]
; k � 0:

Therefore, equation (2.19) one-step approach with memory has an R-order

of convergence of 3:90057. The computational e¢ ciency index of (2.19) is

3:900571=2 � 1:97499 � 2:

Error equation of the above scheme (2.19) is:

erk+1 � er2(r
2+pr+r+p+1)

k�2

� In 2020, Barrada, M. et al. [29] arrived at the iterative procedure shown below,

which served as a broad variant of Halley�s approach HP for locating simple

roots:

rpn+1 = r
p
n � wp(Ln)

q(rn)

q0(rn)
; (2.20)

where

wp(Ln) =
Sp(Ln)

Sp+1(Ln)
; n = 0; 1; 2; 3; :::
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and

S0(Ln) = 1;

S1(Ln) = 1� Ln
2
;

Sp+2(Ln)� Sp+1(Ln) = �Ln
2
Sp(Ln):

where p is a parameter, which is a nonnegative integer.

Error equation of the method (2.20) is

ern+1 = [2(1� w
00

p (0))c
2
2 � c3]er3n +O(er4n)

� In 2020, Barrada, M. et al. [30] proposed a new method for �nding simple roots

of nonlinear equations with cubical convergence as follows:

rn+1 = rn �
q(rn)

q0(rn) +
q00(rn)
2
(rn+1 � rn)

; (2.21)

In order to show the power and e¢ ciency of method, a comparative analytic study

is provided by author between the proposed method and other third and higher order

method. The simplicity and power of the proposed formula pushed to do a �rst study

of its global convergence.

By replacing (rn+1�rn) remaining in the denominator of right-hand side of (2.21)

by Halley�s correction, author gets the following famous method of Super Halley,

rn+1 = rn �
q(rn)

2q0(rn)
(
2� Ln
1� Ln

); (2.22)

SH(r) = r � q(rn)

2q0(rn)
(
2� Lq(r)
1� Lq(r)

):
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Now, by replacing (rn+1�rn) located on the right-hand side of (2.21) by Super Halley�s

correction given in (2.22), to get the following,

r2n+1 = r2n �
q(r2n)

q0(rn)
�W2(Ln); (2.23)

W2(Ln) =
4(1� Ln)

L2n � 6Ln + 4
:

Above equation (2.23) has cubically convergent order and satis�ed the error equation

ern+1 = �c3er3n +O(er4n):

� In 2020, Wang, X. et al. [31] presented a novel way to construct the self-

accelerating parameter and derived a modi�ed newton method. Considered the

following scheme:

sn = rn �
q(rn)

q0(rn)
; (2.24)

rn+1 = sn � T (sn � rn)2:

where T 2 R: The order of convergence of the iterative method (2.24) is two

and its error equation meets the following equation is:

ern+1 = (c2 � T )er2n +O(er3n�1):

where ern = rn � rt; c2 = q(2)(rt)

2q
0
(rt)
; and T 2 R � f0g: If the variable parameter

Tn satis�es, Lim
n!1

Tn = c2 then the asymptotic convergence constant to be zero.
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The new self accelerating parameter is given by the following

Tn1 =
sn�1 � sn
(rn � rn�1)2

; (2.25)

Tn2 =
sn�1 � sn

(sn�1 � rn�1)2
; (2.26)

Tn3 =
sn�1 � sn

(sn�1 � rn�1)(rn � rn�1)
(2.27)

Replacing the parameter T in equation (2.24) with Tn, obtained the following

iterative method with memory:

sn = rn �
q(rn)

q0(rn)
; (2.28)

rn+1 = sn � Tn(sn � rn)2:

R-order of convergence of iterative method (2.28) is atleast 1 +
p
2 � 2:414 .

� In 2020Wang, X. et al. [16] constructed the following modi�ed iterative method:

wn = rn + q(rn); (2.29)

tn = rn �
q(rn)

q[rn; wn]
;

sn = tn � T (tn � rn)2;

rn+1 = sn �
q(sn)

q[rn; sn] + q[sn; wn]� q[rn; wn]
;

where T 2 R is a self-accelerating parameter. If function q : I � R ! R is

su¢ ciently di¤erentiable and has a simple zero rt on an open interval I, then

iterative method (2.29) is of fourth-order convergence and its error equation is

as follows:

ern+1 = (c2 + c2q
0(rt)� T )[c22(1 + q0(rt))� c3(1 + q0(rt))� c2T )]er4n +O(er5n):
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Where ern = rn � rt; T 2 R and

cm = (
1

m!
)
qm(rt)

q0(rt)
; n = 2; 3; 4; : : :

� In 2020, Ra�q, N. et al. [32] proposed the following family of iterative methods.

si = vi �
q(vi)

q0(vi)
; (2.30)

ti = si �
q(vi)

q0(vi)
�(u);

where

u =
q(vi)

q(ri)
:

For iterative scheme (2.30), the following convergence theorem

Theorem: Let rt 2 I be a simple root of su¢ ciently di¤erential equation q :

I � R ! R in an open interval I. If vo is su¢ ciently close to rt and � be a real

valued function satisfying �(0) = 0, �
0
(0) = 1, �

00
(0) = 4 and �

000
(0) < 1, then

the convergence method of the family of iterative method (2.30) is 4 and satis�es the

following error equation :

eri+1 = (5c
3
2 � c2c3 �

1

6
�
000
(0)c32)er

4
i +O(er

5
i ):

where

cm =
qm(rt)

m!q0(rt)
: m � 2:

� In 2020, Chu, Y. et al. [33] constructed a ninth order derivative free simultane-

ous method which is more e¢ cient than the similar methods existing in liter-

ature, author considered eighth order derivative free Kung�Traub�s [34] family
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of iterative method (abbreviated as KF):

�(t) = �(t) � rtq(�
(t))2

q(v(t))� q(�(t)) ; (2.31)

u(t) = �(t) � ( q(�(t))q(v(t))

(q(v(t))� q(�(t))( q(�(t)�q(�(t)
�(t)��(t) )

);

z(t) = u(t) � (
q(�(t))q(v(t))(�(t) � �(t) + q(�(t))

q(�(t))�q(u(t)

�(t)�u(t)

)

(q(�(t))� q(u(t)))(q(v(t) � q(u(t))) ) + (
q(�(t))

q(�(t))�q(u(t))
�(t)�u(t)

);

where

v(t) = �(t) + rtq(�
(t)):

Let �1; �2; : : : �n be n simple roots of q(�) = 0. If �
(0)
1 ; �

(0)
2 ; : : : �

(0)
n be the su¢ -

ciently close initial approximations to actual roots, then the order of convergence

of (2.31) is nine.

� In 2021, Liu, C. S. et al. [35] decomposed q(r) = 0 by:

q(r) = g(r)r + ar � b;

and derived a a novel iterative scheme for solving a single non�linear equation

q(r) = 0.

rn+1 = rn �
q(rn)rn

(aw + c)rn + (1� w)[b+ q(rn)
: (2.32)

Liu, C. S. et al. concerned with the local convergence property of the iterative

scheme (2.32). The iterative scheme (2.32) for solving q(r) = 0 has third-order

convergence, if the parameters w and c are given by

w = 1� c2rn
c1
; c = c1 � a+

ac2rn
c1

� bc2
c1
;
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where c1 = q0(r) and c2 =
q
;;
(r)
2
and q(r) = 0 and q0(r) 6= 0 for a simple root rt.

The error equation of the above method is,

ern+1 = ern � q(ern) = ern � ern �
q000(0)

6
er3n + ::: = �

q000(0)

6
er3n + � � �

� In 2021, Neta B. [36] developed a derivative-free method with memory based

on Traub�s method

sn = rn �
q(rn)

(q(rn�2)�q(rn))
(rn�2�rn) � q(rn�2)�q(rn�1)

rn�2�rn�1 + q(rn�1)�q(rn)
rn�1�rn

(2.33)

as the �rst step and the other two steps are based on replacing the derivative

by the derivative of Newton interpolating polynomial of degree 3. In the next

section, Neta B. discussed the order of the scheme and the computational order

of convergence, COC, de�ned by

COC =
ln
��� ri�rt
ri�1�rt

���
ln
��� ri�1�rtri�2�rt

��� :
Neta B. suggested a 3-step method having (2.33) as the �rst step. The method

is given by

sn = rn �
q(rn)

	(rn; rn�1; rn�2)
(2.34)

tn = sn �
q(sn)

q0(sn)
;

rn+1 = tn �
q(tn)

q0(tn)
;

where 	(rn; rn�1; rn�2) =
q(rn�2)�q(rn)
rn�2�rn � q(rn�2)�q(rn�1)

rn�2�rn�1 + q(rn�1)�q(rn)
rn�1�rn :

The error in the �rst step is given by

esn = Cer
1:839
n ;
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where C is the computational error constant.

The other two steps are of the same order as the Newton�s method, i.e. etn = es2n

and ern+1 = et2n. Therefore, the order of the method is 4� 1:839 = 7:356. The

e¢ ciency index I = p1=d = (7:3561)
1
3 = 1:945 is higher than that of the 3-step

optimal eighth order method.

The order of convergence is proved in form of following theorem.

Theorem 1 Let q : I � R! R be a di¤erential in an open interval I and rt 2 I be

a simple zero of q. Then iterative method (2.34) has order of convergence 7:356 and

its error equation is as follow:

ern+1 = (ern)
7:356

Proof. Let, ern = rn � rt; ern�1 = rn�1 � rt; ern�2 = rn�2 � rt be error at nth;

(n� 1)th and (n� 2)th step. Now, using Taylor expansion q(rn) around rt as follows:

q(rn � rt + rt) = q(rt) + (rn � rt)q
0
(rt) +

(rn � rt)2
2!

q
00
(rt) + � � � .

Since, q(rt) = 0 as rt is given as simple zero, thus we have:

q(rn) = ern + c2er
2
n + c3er

3
n + c4er

4
n + c5er

5
n + c6er

6
n + c7er

7
n +O(er

8
n); (2.35)

where

cm =
qm(rt)

m!q0(rt)
; m = 2; 3; : : : .
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Similarly, we calculate:

q(rn�1) = ern�1 + c2er
2
n�1 + c3er

3
n�1 + c4er

4
n�1 + c5er

5
n�1 + c6er

6
n�1c7er

7
n�1 +O(er

8
n�1);

(2.36)

and

q(rn�2) = ern�2+c2er
2
n�2+c3er

3
n�2+c4er

4
n�2+c5er

5
n�2+c6er

6
n�2+c7er

7
n�2+O(er

8
n�2):

(2.37)

From (2.35) and (2.36) we get:

q(rn�1)� q(rn)
rn�1 � rn

= 1 + c2(ern � ern�2) + c3(er2n + er2n�1 + ernern�1) + � � � ; (2.38)

with the similar calculations we obtain the following results after simpli�cations:

q(rn�2)� q(rn�1)
rn�2 � rn�1

= 1+c2(ern�1+ern�2)+c3(er
2
n�2+er

2
n�1+ern�1ern�2)+� � � (2.39)

and

q(rn�2)� q(rn)
rn�2 � rn

= 1 + c2(ern + ern�2) + c3(er
2
n + er

2
n�2 + ernern�2) + � � � . (2.40)

Using algebraic manipulation with equations (2.38-2.40) that required to obtain	(rn; rn�1; rn�2)

	(rn; rn�1; rn�2) = 1 + c2(ern�1 � ern�2)� c2(ern + ern�2) + c2(ern + ern�1)

�c3ern�2ern�1 (2.41)

Now, in order to obtain �rst step of method (2.34), by using equations (2.35) and

(2.41) we get the �nal result:

sn = rt + c3ernern�1ern�2 + ::: ;

esn � c3ernern�1ern�2; (2.42)
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where esn = sn � rt is an error in �rst step. Now by using de�nition of convergence

order at nth step that is given in form of following expression:

jern+1j � C jernjp : (2.43)

Using (2.43) in (2.42), the error equation (2.42) will be modi�ed as follows (for in-

stance consider ern+1 = esn):

C jernjp � jc3j jernj jern�1j jern�2j

jernjp�1 � jc3j
C
jern�1j jern�2j ;

again using jern+1j � C jernjp ; we simpli�ed above expression as follows:

jern�1jp
2�p�1 �

�
jc3j
C2

�
jern�2j

jern�1j �
�
jc3j
C2

� 1
p2�p�1

jern�2j
1

p2�p�1 :

Following the de�nition of convergence order, we observed that C =
�
jc3j
C2

� 1
p2�p�1 and

p =
1

p2�p�1

which implies

p3 � p2 � p� 1 = 0: (2.44)

Since condition on p is that p > 0; leads the following positive solution of nonlinear

equation (2.44) is 1:839544: We conclude that for the �rst step of method (2.34)

esn � (ern)1:8395: (2.45)
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Again by using Taylor series we obtain the following series:

q(sn) = esn + d2es
2
n + d3es

3
n + d4es

4
n + d5es

5
n + d6es

6
n + d7es

7
n +O(es

8
n); (2.46)

where

dj =
qj(sn)

j!q0(sn)
; j = 2; 3; : : : .

and

q0(sn) = 1 + 2d2esn + 3d3es
2
n + 4d4es

3
n + 5d5es

4
n + 6d6es

5
n + 7d7es

6
n +O(es

7
n): (2.47)

After algebraic calculations of equations (2.46) and (2.47), we get an error equation

for the 2nd step of method (2.34) as follows:

tn = rt + d2es
2
n +O(esn)

3;

etn = d2es
2
n +O(esn)

3:

Therefore,

etn � es2n (2.48)

In a similar way, error equation for the third step is obtained as follows:

ern+1 � et2n: (2.49)

Combining (2.45), (2.48) and (2.49), we have:

ern+1 � et2n �
�
es2n
�2 � (ern)1:8395�4 = (ern)7:356:

Hence proved the theorem.
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In 2022, Thota, S. et al. [37] used the following iterative schemes to �nd the

approximate solution rn+1:

sn = rn �
q(rn)

q0(rn)
� (q(rn))

2q
00
(rn)

2(q0(rn))3
;

rn+1 = rn �
q(rn)

q0(rn)
� (q(rn))

2q
00
(rn)

2(q0(rn))3
� q(sn)

q0(sn)
: (2.50)

Order of convergence of iterative method (2.50) is 6.
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In order to facilitate the reader, we are going to employ some basic de�nitions and

related concepts all throughout the dissertation.

3.1 Types of Equation

In this section, some de�nitions of equations at its types are given to clarify the

ideas about it.

Linear Equation

An equation is said to be linear if it is linear in the involved variables [38]. For

example,

s = �7r + 5
4
:

                         Chapter 3

                 Basic Definations
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Non-linear Equation

An equation of the form,

q (r) = 0;

where q(r) is a non-linear algebraic or transcendental function [38]. For example,

sin(4r) + (e)5r + 2 = 0

or

r4 + 11 = 0:

Algebraic Equations

If q(r) is a non-linear algebraic function [39], such as a polynomial equation of

degree two or higher, then the non-linear equation q(r) = 0 is a non-linear algebraic

equation

Dr2 + Er +M = 0;

is a 2nd-degree polynomial equation in r.

Transcendental Equations

If the nonlinear equation q(r) = 0 [39] contains trigonometric, exponential, loga-

rithmic, or any combination of these functions, it is referred to as a transcendental

equations, such as

err sin (r) + r = 0;
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a transcendental equation, for instance.

3.2 Roots of an Equation

Consider q(r) = 0 as a nonlinear equation [40]. When a real number r = rt solves

the equation, it is referred to as the root of equation. For example

r2 � 9 = 0;

is an equation having roots 3 and �3.

Distinct Root

When an equation has real roots, its answers or roots are included in the set of

real numbers [40]. We contend that if an equation has unique roots, then not all of

its solutions or roots are equal. Any quadratic equation with a discriminant b2 � 4ac

larger than has actual and distinct roots .

For example (r � 1)(r � 2)(r � 5) = 0 has 3 distinct real roots: 1; 2, and 5:

Multiple Root

Assume that a real function q(r) and its derivatives are continuous near the point

r = ` and an integer j [40]; such that

q(`) = 0; q
0
(`) = 0; q

00
(`) = 0; :::; q(j�1)(`) = 0;
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and qj 6= 0: If j = 1, then ` is referred to as the equation�s "simple root" and if

j > 1, then ` is referred to as the equation�s "repeated or multiple root": For instance

s2 + 2s5 � 4s4 + 4s3 + 7s2 + 4s� 4 = 0:

The roots of equation are 1; 2 and 4, with the order of root 4 being 3. The order of

roots 2 and �2 and �4 is a simple root.

3.3 Iterative Methods

Using initial values [41], the mathematical technique creates an increasing suc-

cession of approximations for a class of problems, with each approximation deriving

from the one before it, this is called iterative method .

Newton Raphson Method

The most commonly used technique for solving single variable nonlinear equation

[41] is de�ned by:

rn+1 = rn �
q(rn)

q0(rn)
; j = 0; 1; :::;

where,

q0(rn) 6= 0:
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Iterative Method With Memory

Methods with memory is based on the use of suitable two-valued functions and

the variation of a free parameter in each iterative step [41]. This parameter is calcu-

lated using information from the current and previous iteration so that the developed

methods may be regarded as methods with memory. For example,

rn+1 = rn � q(rn)
rn � rn�1

q(rn)� q(rn�1)
; n = 0; 1; :::

with convergence order 1:69 and e¢ ciency index 1:69. The above method is referred

as with memory method.

Iterative Method Without Memory

Without-memory methods which are extendable to with-memory methods without

insertion of any extra functional evaluation by using Newton�s interpolating polyno-

mials have gained attention [41]. These iterative methods o¤er a choice to achieve

higher convergence order and increased e¢ ciency. For example,

rn+1 = rn �
q(rn)

q0(rn)
, n = 1; 2; :::

with convergence order 2 and e¢ ciency index 1:414, is the well known Newton�s

method which referred as without memory method.
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Self-Accelerating Parameter

Self-accelerating type method is a kind of e¢ cient iterative method with mem-

ory for solving nonlinear equations, which chooses some varying parameters as self-

accelerating parameters in the iteration processes [16]. The self-accelerating para-

meter is calculated by using information from previous and current iterations, which

does not increase the computational cost of iterative method. Thus, self-accelerating

type methods possess a very high computational e¢ ciency. Self-accelerating para-

meter is very important to self-accelerating type method, which can make a big

di¤erence to the e¢ ciency of iterative method. There are two ways to construct the

self-accelerating parameter, which are divided di¤erence and interpolation method.

Traub�s method [2] is one of the most representative methods for self-accelerating

type method, which can be written as:

wn = rn + Tnq(rn);

Tn =
�1

q[rn � rn�1]
:

The parameter Tn is called the self accelerating parameter.

Taylor�s Series

Let q(r) be a function [42] having continuos derivative upto order n on [a; a + h]

then the Taylor series is de�ned as:

q(a+ h) = q(a) + hq0(a) +
h2

2!
q
00
(a) + � � �+ hn�1

(n� 1)!q
(n�1)(a) + � � � .
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This in�nite series is called Taylor�s series. If we substitute t instead of a+ h then it

is alternatively given as :

q(t) = q(a) + (t� a)q0(a) + (t� a)
2

2!
q
00
(a) + � � �+ (t� a)

n�1

(n� 1)! q
n�1(a) + � � � .

E¢ ciency Index

To compare di¤erent iterative methods, the e¢ ciency index is widely used sug-

gested by Ostrowski [2], in (1960).

EI = (�)
1
n :

where � is the local order of convergence of the method and n represents the number

of the evaluations of functions necessary to carry out the method per iteration.

First Order Divided Di¤erence For Scaler Function

Divided di¤erences are used in the replacement of derivative for discrete data [44].

The �rst order divided di¤erence is denoted as [r; s; q] or q[r;s] and is calculated by

the following formula:

[r; s; q] =
q(s)� q(r)
s� r :

Finite Di¤erence Method

In numerical analysis, a numerical formulation known as �nite di¤erence method

are used to approximate the derivatives when the function is known only on the

discrete set of points. The �nite di¤erence formulas are of the three types given as:
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I. Forward Di¤erence Formula

II. Backward Di¤erence Formula

III. Central Di¤erence Formula

First Derivative Forward Di¤erence Formula Of O(h)

By using expansion of Taylor�s series of q(r) [45], about a single point s = si with

si+1 = si + h, the �rst order forward di¤erence formula is given as:

q0(si) �
qi+1 � qi
h

+O(h2):

First Derivative Backward Di¤erence Formula Of O(h)

By using expansion of Taylor�s series q(r) [45], about a single point s = si with

si+1 = si + h, the �rst order backward di¤erence formula is de�ned as:

q0(si) �
qi � qi�1
h

+O(h2):

First Derivative Central Di¤erence Formula Of O(h)

By using expansion of Taylor�s series q(r) [45], about a single point s = si with

si+1 = si + h and si�1 = si � h; the central di¤erence formula is de�ned as:

q0(si) �
qi+1 � qi�1

2h
+O(h2):
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Second Derivative Forward Di¤erence Formula Of O(h)

By using expansion of Taylor�s series q(r) [45], about a point s = si with si+1 =

si + h and si+2 = si + 2h, the second order forward di¤erence formula is de�ned as:

q
00
(si) �

2qi+1 + qi+2 + qi
h2

+O(h2):

Second Derivative Backward Di¤erence Formula Of O(h)

By using expansion of Taylor�s series q(r) [45], about a point s = si with si�1 =

si � h and si�2 = si � 2h, the second order forward di¤erence formula is de�ned as:

q
00
(si) �

qi�2 � 2qi�1 + qi
h2

+O(h2):

Second Derivative Central Di¤erence Formula Of O(h)

By using expansion of Taylor�s series of q(r) [45], about a point s = si with

si�1 = si + h and si+1 = si + h, the second order central di¤erence formula is de�ned

as:

q
00
(si) �

qi+1 � 2qi + qi�1
h2

+O(h2):

3.4 Errors In Computations

There are three types of errors in computations, i.e. ,

(1) Truncation Error,
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(2) Round-o¤ Error, and

(3) Inherent Error

Truncation Error

The discrepancy between a function�s true value and its truncated value is known

as a truncation error [46]. The function�s approximate value up to a speci�ed number

of digits is the truncated value. For instance, the vacuum speed of light is 2:99792458�

108ms�1.

Round-O¤Error

The round-o¤ error is the discrepancy between a number�s approximate value and

its exact (right) value when it is employed in a calculation [46]. The discrepancy

between the true value of an irrational number and the values of rational expressions

like 22
7
, 355
113
, 3:14, or 3:14159 serves as an example of round-o¤ error in numerical

analysis.

Inherent Error

A program fault that occurs independently of what the user does and is frequently

inevitable is known as an inherent error [46].

Let r = 0:3333 and s = 3:1416 serve as two approximations of the exact values for

1
3
and. It goes without saying that if we execute an algebraic operation between these

two approximations, the error will be introduced proportionally in the outcome.
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3.5 Errors Measurement

There are three ways to calculate errors

(1) Absolute Error

(2) Relative Error

(3) Percentage Error

Absolute Error

Let us suppose that rt be the true real value and ri be an approximate value [47].

Then, the absolute error is denoted by Ea and is de�ned by:

Ea = jri�rtj :

Relative Error

Let us consider that rt be a true real value and ri be an approximate value [47].

Then, the relative error is denoted by Er and is de�ned by:

Er =
jri � rtj
jrtj

:

Percentage Error

Let us consider that rt be a exact real value and ri be an approximate value [47].

Then, the percentage error is denoted by Ep and is de�ned by:

Ep =
jri � rtj
jrtj

� 100:
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Asymptotic Error Constant

The di¤erence between a sequence�s term and its limit is what the asymptotic error

constant (�) reveals about the behavior of a sequence�s errors [48]. Along with the

order of convergence, the asymptotic error constant in�uences the rate of convergence.

� = lim
n!1

jpn+1 � pj
jpn � pj�

:

Thus � is asymptotic error constant and � is the order of convergence .

Newton Interpolating Polynomial

Newton polynomial, named after its inventor Isaac Newton is an interpolation

polynomial for a given set of data points [49]. The Newton polynomial is sometimes

called Newton�s divided di¤erences interpolation polynomial because the coe¢ cients

of the polynomial are calculated using Newton�s divided di¤erences method.

Order of Convergence

In numerical analysis [31], the order of convergence and the rate of convergence

of a convergent sequence are quantities that represent how quickly the sequence ap-

proaches its limit .

A sequence frng of iterates is of a order of convergence p if

ern+1 t CerPn :
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Error Equation

Let ` be a solution of an equation q(r) = 0, rm and rm+1 be any two subsequent

numerical iteration that are close to the root `; erm and erm+1 be their coincidence

errors, i.e erm = rm � ` be the mth step error [31]. Usually the error equation is :

erm+1 = er
p
m +O(er

p+1
m ):

The given equation describe that the numerical algorithm has order of convergence

p.

R-order Of Convergence

Quantities that indicate how rapidly a convergent sequence approaches its limit

include the order of convergence and convergence rate [31].

Computational Order Of Convergence (COC)

The computational order of convergence (COC) of a sequence frng; n � 0 is

de�ned by [31],

p � ln(jrn+1 � rnj = jrn�1 � rn�2j)
ln(jrn � rn�1j = jrn�1 � rn�2j)

;

where p is the computational order of convergence.

Linear Convergence

A sequence frng is linearly convergent if p = 1 [50].
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Quadratic Convergent

A sequence frng is of quadratic order if p = 2 [50].

Stopping Criteria Of Numerical Method

A stopping condition is necessary for a typical iterative method in numerical

analysis and scienti�c computing [51]. A sequence of generated iterations or steps, an

error tolerance, and a technique to compute (or estimate) a quantity related to the

error are all included in such an algorithm:

jrk � rk�1j � "n:
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In 2020, Wang, X. et al. [31] presented a novel way to construct the self-

accelerating parameter and derived a modi�ed Newton method. If the sequence frng

is generated by newton method, which converges to a simple root rt of a non linear

equation, then the sequence frng satis�es the following relation:

lim
n!1

rn+1 � rt
(rn � rt)2

= lim
n!1

ern + 1

er2n
= c2

where,

c2 =
q
00
(rt)

(2q0(rt))

is the asymptotic error constant,

ern = rn � rt;

ern+1 = rn+1 � rt:

                       Chapter 4

             Construction of Methods
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Wang, X. et al. [31] considered the following scheme:

sn = rn �
q(rn)

q0(rn)
; (4.1)

rn+1 = sn � T (sn � rn)2;

where T 2 R is a self accelerating parameter.

Theorem 2 Let q : I � R! R be a di¤erential in an open interval I and rt 2 I be

a simple zero of q. Then order of convergence of iterative method (4.1) is two and its

error equation meets the following equation:

ern+1 = (c2 � Tn)er2n +O(er3n); (4.2)

where

rn = ern + rt; (4.3)

c2 =
q2(rt)

(2q0 (rt))
and T 2 R� f0g:

Proof. Let

ci =
qi(rt)

i!q0(rt)
; i = 2; 3; 4; : : :

Using the Taylor expansion of q(r) around r = rt and taking q(rt) = 0 into account,

we get:

q(rn) = ern + c2er
2
n + c3er

3
n + c4er

4
n + c5er

5
n

+c6er
6
n + c7er

7
n +O(er

8
n); (4.4)
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q0(rn) = 1 + 2c2ern + 3c3er
2
n + 4c4er

3
n +

5c5er
4
n + 6c6er

5
n + 7c7er

6
n +O(er

7
n): (4.5)

Now taking inverse of q0(rn)

1

q0(rn)
= 1� 2c2ern + (�3c3 + 4c22)er2n + (�4c4 + 6c2c3

+2(3c3 + 4c
2
2)c2)er

3
n +O(er

4
n); (4.6)

now from (4.4) and (4.6) we get:

q(rn)

q0(rn)
= ern � c2er2n + (�2c3 + 2c22)er3n

+(�4c32 + 7c2c3 � 3c4)er4n +O(er5n); (4.7)

using Equation (4.3) and (4.7) in (4.1) , we get:

sn = rn �
q(rn)

q0(rn)
= c2er

2
n + (2c3 � 2c22)er3n + (4c32 � 7c2c3 + 3c4)er4n +O(er5n): (4.8)

sn � rn = �ern + c2er2n + (2c3 � 2c22)er3n + (3c4 � 7c2c3 + 4c32)er4n +O(er5n); (4.9)

taking square of (4.9) we get:

(sn � rn)2 = er2n � 2c2er3n + (5c22 � 4c3)er4n +O(er5n);

now using Equation (4.1) and (4.8), we get:

ern+1 = rn+1 � rt = sn � rt � T (sn � rn)2 = (c2 � T )er2n

+2(c3 � c22 + c2T )er3n +O(er4n):

Hence proof is completed.
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Theorem 3 Let the self accelerating parameter Tn be calculated by (2.25), (2.26) or

(2.27) in the iterative method (2.28), respectively. If r0 is an initial approximation,

which is su¢ ciently close to a simple root rt of q(r), then the R-order of convergence

of the iterative methods (2.28) is at least 1 +
p
2 � 2:414:

Proof. Let the sequence frng be generated by an iterative method, which con-

verges to the root rt of q(r) with the R-order OR(IM; a) � r, we obtain:

ern+1 � Dn;rer
r
n; rn � rt = ern; (4.10)

when n!1, Dn;r tends to the asymptotic error constant in Equation (4.10). There-

fore,

ern+1 � Dn;r(Dn�1;rer
r
n�1)

r = Dn;rDn�1;rer
r2

n�1: (4.11)

The error equation of the method (2.28) with memory can be obtained by using

Equation (4.2) which satis�es:

ern+1 = rn+1 � a � (c2 � Tn)er2n +O(er3n) (4.12)

Substitute ern = ern�1 in rn+1 we get:

ern = (�T + c2)er2n�1 + (2c3 + 2Tc2 � 2c22)er3n�1

+(4c32 + 4Tc3 � 5Tc22 + 3c4 � 7c2c3)er4n�1 +O(er5n�1);

substitute ern = ern�1 in sn we get:

sn�1 = c2er
2
n�1 + (�2c22 + 2c3)er3n�1 + (4c32 � 7c2c3 + 3c4)er4n�1 +O(er5n�1); (4.13)
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snew = (c32 � 2c22Tn�1 + c2T 2n�1)er4n�1

+(�8c42 + 20c22c3 � 10c2c4 � 6c23 + 4c5)er6n�1 +O(er8n�1); (4.14)

from equation( 4.13) and (4.14) we get:

sn�1 � snew = c2er
2
n�1 + 2(c3 � c22)er3n�1 + (3c3 + 3c4 + 2c22Tn�1

�c2(7c3 + T 2n�1))er4n�1 +O(er5n�1); (4.15)

rn = (c2 � Tn�1)er2n�1 + (2c3 + 2c2Tn�1 � 2c22)er3n�1 +O(er4n�1);

by simplify (4.15) we get:

sn�1 � snew = c2 + (2c3 � 2c22)ern�1 +O(er2n�1); (4.16)

rn � rn�1 = �ern�1 + (c2 � Tn�1)er2n�1

+2(�c22 + c3 + c2Tn�1)er3n�1 +O(er4n�1); (4.17)

taking square of (4.17) we get:

(rn � rn�1)2 = �1 + (c2 � Tn�1)ern�1

+(�2c22 + 2c2Tn�1 + 2c3)er2n�1 +O(er3n�1); (4.18)

taking inverse of (4.18)

1

(rn � rn�1)2
= 1 + (2c2 � 2Tn�1)ern�1 +O(er2n�1);

using Equations (4.17) and (4.16) we get:

Tn1 =
sn�1 � snew
(rn � rn�1)2

= c2 + 2(c3 � c2Tn�1)ern�1 +O(er2n�1); (4.19)
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c2 � Tn1 � �2(c3 � c2Tn�1)ern�1 +O(er2n�1): (4.20)

sn�1 � rn�1 = �ern�1 + c2er2n�1 + 2(c3 � c22)er3n�1 +O(er4n�1); (4.21)

simplify (4.21) we get:

(sn�1�rn�1)2 = �1+c2ern�1+(2c3�2c22)er2n�1+(3c4�7c2c3+4c32)er3n�1+O(er4n�1);

taking inverse of above equation

1

(sn�1 � rn�1)2
= 1 + 2c2ern�1 +O(er

2
n�1); (4.22)

from equations ( 4.17) and (4.22) we get:

Tn2 =
sn�1 � snew
(sn�1 � rn�1)2

= c2 + 2c3ern�1 +O(er
2
n�1); (4.23)

c2 � Tn2 � �2c3ern�1 +O(er2n�1): (4.24)

Multiply (4:17) with (4:28) we get :

(sn�1 � rn�1)(rn � rn�1) = er2n�1 + (�2c2 + Tn�1)er3n�1 +O(er4n�1); (4.25a)

simplify (4:25a) we get:

(sn�1 � rn�1)(rn � rn�1) = 1 + (�2c2 + Tn�1)ern�1 +O(er2n�1); (4.26)

taking inverse of (4.26) we get:

1

(sn�1 � rn�1)(rn � rn�1)
= 1 + (2c2 � Tn�1)ern�1 +O(er2n�1); (4.27)

from equation (4.16) and (4.27) we have:

Tn3 =
sn�1 � sn

(sn�1 � rn�1)(rn � rn�1)
= c2 + (2c3 � c2Tn�1)ern�1 +O(er2n�1); (4.28)
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c2 � Tn3 � �(2c3 � c2Tn�1)ern�1 +O(er2n�1): (4.29)

According to Equations (4.12),(4.24),(4.20) and (4.29) we get:

ern+1 = (c2 � Tn)er2n � �2(c3 � c2Tn�1)D2
n�1;rer

2r+1
n�1 : (4.30)

Comparing exponents of ern�1 in relations Equations (4.11) and (4.30), we obtain the

following equation:

r2 � 2r � 1 = 0: (4.31)

The positive solution of Equation (4.31) is given by r = 1 +
p
2 � 2:414. Therefore,

the R-order of convergence of the method (2.28), when Tn1 is calculated by (2.25), is

atleast 1+
p
2 = 2:414. From Equations (4.20), (4.24) and (4.29), we can see that Tn1;

Tn2; Tn3 have the same error level. Thus, the convergence order of iterative method

(2.28) with memory is atleast 2:414, when Equations (2.26) and (2.27) is used to

compute the parameter Tn, respectively. This completes the proof.

As a new Newton technique with memory, the use of a variable self-accelerating

parameter is proposed. The Newton method�s invariant parameter is replaced by

an invariant parameter in a modi�ed Newton methodology without memory that is

used to solve nonlinear equations. We develop a new Newton method with memory

employing a variable self-accelerating parameter without memory. Convergence order

for the innovative Newton technique with memory is 1+
p
2. Without performing any

more function evaluations, the speeding is achieved. The self-accelerating parameter

is developed in a straightforward method, which is the key development.
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� In 2020 Wang X. et al. [16] constructed the following modi�ed iterative method

wn = rn + q(rn); (4.32)

tn = rn �
q(rn)

q[rn; wn]
;

sn = tn � T (tn � rn)2;

rn+1 = sn �
q(sn)

q[rn; sn] + q[sn; wn]� q[rn; wn]
;

where T 2 R is a self-accelerating parameter. For method (4.32), we have the

following convergence analysis.

Theorem 4 If function q : I � R! R is su¢ ciently di¤erentiable and has a simple

zero rt on an open interval I, then iterative method (4.32) is of fourth-order conver-

gence and its error equation is as follows:

ern+1 = (c2 + c2q
0(rt)� T )[c22(1 + q0(rt))� c3(1 + q0(rt)� c2T )]er4n +O(er5n); (4.33)

where ern = rn � rt; T 2 R and cm = ( 1m!)
qm(rt)
q0(rt)

;m = 2; 3; 4; : : :

Proof. Using Taylor expansion of q(rt), we have

q(rn) = q
0(rt)[ern + c2er

2
n + c3er

3
n + c4er

4
n + c5er

5
n +O(er

6
n)]; (4.34)

ern;w = wn � rt = ern + q(rn) = 1 + q0(rt)ern + c2q0(rt)er2n + (c3q0(rt)er3n +O(er4n));

q(wn) = q0rt)[(1 + q
0(rt))ern + c2(1 + 3q

0
(rt) + q

0(rt)
2)er2n +

(2c22q
0(rt)(1 + q

0(rt)) + c3(1 + 4q
0
(rt)

+3q
0
(rt)

2 + q0(rt)
3))er3n +O(er

4
n)]; (4.35)
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q[rn; wn] = q0(rt)[1 + c2(2 + q
0(rt))ern + c

2
2q
0(rt) + c3(3 + 3q

0
(rt)

+q0(rt)
2))er2n + (2 + q

0(rt))(2c2c3q
0(rt)

+c4(2 + 2q
0
(�rt + q

0(rt)
2))er3n +O(er

4
n): (4.36)

According to (4.32), (4.34) and (4.36), we get:

ern;t = tn � rt = c2(1 + q0(rt))er2n + (�c22(2 + 2q
0
(rt) + q

0(rt)
2) (4.37)

+c3(2 + 3q
0
(rt) + q

0(rt)
2))er3n +O(er

4
n):

From (4.32) and (4.37), we obtain:

ern;s = sn � rt = (c2 + c2q0(rt)� T )er2n + (�c22(2 + 2q
0
(rt) + q

0(rt)
2) (4.38)

+c3(2 + 3q
0
(rt) + q

0(rt)
2) + 2c2(1 + q

0(rt))T )er
3
n +O(er

4
n):

By a similar argument to that of (4.34) we get:

q(sn) = q0(rt)(c2 + c2q
0(rt)� T )er2n + q0(rt)(�c22(2 + 2q

0
(rt) (4.39)

+q0(rt)
2) + c3(2 + 3q

0
(rt) + q

0(rt)
2) + 2c2(1 + q

0(rt))T )er
3
n +O(er

4
n):

Using (4.34), (4.38) and (4.39) we have:

q[rn; sn] = q
0(rt) + c2q

0(rt)ern + q
0(rt)(c3 + c

2
2(1 + q

0(rt))� c2T )er2n +O(er3n); (4.40)

q[sn; wn] = q0(rt) + c2q
0(rt)(1 + q

0(rt)ern + q
0(rt)(c3((1 + q

0(rt))
2 (4.41)

+c22(1 + 2q
0
(rt))� c2T )er2n +O(er3n):
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Together with (4.32) and (4.38)�(4.41), we obtain the error equation:

ern+1 = rn+1 � rt = (c2 + c2q0(rt)� T )[c22(1 + q0(rt))

�c3(1 + q0(rt))� c2T ]er4n: (4.42)

The proof is completed.

Remark 1. From (4.33), we can see that the convergence order of method (4.32)

is at least �ve provided that T = c2(1 + q0(rt)). Hence, in order to obtain a new self-

accelerating type method, we will use a self-accelerating parameter Tn to replace the

parameter T if the parameter Tn satis�es the relation lim
n!1

Tn = T = c2(1+q
0(rt)). we

can use interpolation method to construct self-accelerating parameter. For example,

the self-accelerating parameter Tn can be given by

Tn =
N

00
2 (rn)

2N
0
2(rn)

(1 +N
0

2(rn)); (4.43)

where N2(t) = N2(t; rn; rn�1; wn�1) is Newton�s interpolatory polynomial of second

degree,

N
0

2(rn) = q[rn; rn�1] + q[rn; rn�1; wn�1](rn � rn�1)

and

N
00

2 (rn) = 2q[rn; rn�1; wn�1]



62

Now, we obtain a new self-accelerating type method as follows:

wn = rn + q(rn); (4.44)

tn = rn �
q(rn)

q[rn; wn]
;

sn = tn � Tn(tn � rn)2;

rn+1 = sn �
q(sn)

q[rn; sn] + q[sn; wn]� q[rn; wn]
;

Theorem 5 Let the varying parameter Tn be calculated by (4.43) in method (4.44). If

an initial value r0 is su¢ ciently close to a simple zero r of function q(r), then the R-

order of convergence of self-accelerating type method (4.32) is at least 2+
p
5 � 4:2361:

Proof. If an iterative method (IM) generates sequence frng that converges to the

zero rt of q(r) with the R-order OR(IM; a) � r, then we can write

ern+1 � Dn;rer
r
n; (4.45)

where ern = rn� rt and the limit of Dn;r is the asymptotic error constant of iterative

method, as n!1 So,

ern+1 � Dn;r(Dn�1;rer
r
n�1)

r = Dn;rD
r
n�1;rer

r2

n�1: (4.46)

Similar to (4.46), if the R-order of iterative sequence fsng is p, then

ern;s = Dn;per
p
n � Dn;p(Dn�1;rer

r
n�1)

p = Dn;pD
p
n�1;rer

rp
n�1: (4.47)

According to (4.38) and (4.42), we obtain:

ern;s = sn � rt � (c2 + c2q0(rt)� Tn)er2n +O(er3n); (4.48)
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ern+1 = rn+1�rt � (c2+c2q0(rt)�Tn)[c22(1+q0(rt))�c3(1+q0(rt))�c2Tn]er4n: (4.49)

Here, we omit the higher-order terms in (4.48)�(4.49). Let N2(t) be the Newton inter-

polating polynomial of degree two that interpolates the function q at nodes rn; wn�1;

rn�1 contained in interval. Then, the error of the Newton interpolation can be ex-

pressed as follows:

q(t)�N2(t) =
q(3)(rt)

3!
(r � rn)(r � wn�1)(r � rn�1); rt 2 I: (4.50)

Di¤erentiating (4.50) at the point t = rn, we get:

N
0

2(rn) � q0(rt)(1� c3((1 + q0(rt))er2n�1 +O(er3n�1)); (4.51)

N
00

2 (rn) � 2q
0
(rt)(c2 + c3(2 + q

0(rt))ern�1 +O(er
2
n�1)); (4.52)

Tn =
N

00
2 (rn)

2N
0
2(rn)

(1 +N
0

2(rn)) (4.53)

� c2(1 + q0(rt)) + c3(1 + q0(rt))(2 + q0(rt))ern�1 +O(er2n�1): (4.54)

Using (4.48), (4.49) and (4.54) we get:

ern;s = (c2 + c2q
0(rt)� Tn)er2n

� �c3(1 + q0(rt))(2 + q0(rt))ern�1)(Dr
n�1;rer

r
n�1)

2

� �c3(1 + q0(rt))(2 + q0(rt))(D2
n�1;rer

2r+1
n�1 ): (4.55)

ern+1 = (c2 + c2q
0(rt)� Tn)[c22(1 + q0(rt))� c3(1 + q0(v))� c2Tn]er4n

� c23(1 + q0(rt))2(2 + q0(rt))ern�1(Dn�1;rer
r
n�1)

4
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� c23(1 + q0(rt))2(2 + q0(rt))D4
n�1;rer

4r+1
n�1 : (4.56)

By comparing exponents of ern�1 in relations (4.47), (4.55) and (4.46) and (4.56), we

have:

2r + 1 = rp; (4.57)

4r + 1 = r2:

Solving system (4.57), we obtain r = 2 +
p
5 � 4:2361 and p =

p
5 � 2:2361:

Therefore, the R-order of method (4.44) is at least 4:2361, when Tn is calculated by

(4.53). The proof is completed.

� In this chapter, based on Wang, X. and Fan, Q. [16] method with memory a new

multi-step iterative method using two self accelerating parameter is proposed.

Computational order of convergence (COC) of the proposed method [10] is

determined using the following formula:

COC � ln(jrn+1 � rnj = jrn � rn�1j)
ln(jrn � rn�1j = jrn�1 � rn�2j)

: (4.58)

The computational convergence order determined using software package Maple

18.0.

It is important to note that very few with memory self accelerating parameters

are proposed in the literature we mention here the following.
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Zheng et al. [52] introduced following with memory method:

wn = rn + Tnq(rn); Tn =
1

q[rn; rn�1]
; (4.59)

sn = rn �
q(rn)

q(rn; wn)
;

rn+1 = rn �
q(rn)

2

q[rn; wn](q(rn)� q(sn))
:

with convergence order 3:3028.

Wang et al. [20], [53], [54] used an interpolating polynomial with self accelerating

parameters and introduced the following method:

sn = rn �
q(rn)

Tnq(rn) + q0(rn)
; (4.60)

rn+1 = sn �
q(sn)

2Tnq(rn) + q0(rn)
(1 + 2

q(sn)

q(rn)
+ (
q(sn)

q(rn)
)2); (4.61)

where

Tn = �
H

00
2 (rn)

q0(rn)
;

H2(rn) = q(rn) + q
0(rn)(r � rn) + q[rn; rn; sn�1](r � rn)2;

H
00

2 (rn) = 2q[rn; rn; sn�1]:

with convergence order 4:562.

Dzunic et al. [3], [55] presented the iterative method by using self-accelerating

parameter as follows:

wn = rn + Tnq(rn); (4.62)

rn+1 = rn �
q(rn)

q[rn; wn]
;
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where

Tn = �
1

N
0
2(rn)

;

based on newton�s interpolation polynomial of degree two as follows:

N2(t) = N2(t; rn; rn�1; wn�1);

and

N
0

2(t) = q[rn; rn�1] + q[rn; rn�1; wn�1](rn � rn�1):

The computational convergence order of method (4.62) is 3.

The main purpose of this chapter is to propose with memory method using self-

accelerating parameter.

Petkovic et al. [56] gave the following with memory method using self-accelerating

type parameter given by:

wn = rn + Tnq(rn) (4.63)

sn = rn �
q(rn)

q[rn; wn]
;

rn+1 = sn �
q(sn)

q[rn; wn]
(1 +

q(sn)

q(rn)
+
q(sn
q(wn)

):

Based on Ren�s method [8], Wang and Fan proposed modi�ed without memory

method of convergence order 4 as follows:

wn = rn + q(rn); (4.64)

sn = rn �
q(rn)

q[rn; wn]
;

rn+1 = sn �
q(sn)

q[rn; sn] + q[sn; wn]� q[rn; wn] + rt(sn � rn)(sn � wn)
; rt 2 R
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Mathematicians have worked hard over the past few decades to develop more accurate

approximations methods that have higher convergence orders and better e¢ ciency

indices. The number of function evaluations per step rises along with the order of

convergence. Thus, in order to quantify the equilibrium between these quantities, a

new index known as the e¢ ciency index is established.

The use of a variable self-accelerating parameter is suggested as a new Newton

technique with memory. In order to solve nonlinear equations, a modi�ed Newton

technique without memory with an invariant parameter is �rst built replacing the

Newton method�s invariant parameter. By using a variable self-accelerating parameter

without memory, we create a new Newton technique that memory. The novel Newton

method with memory has a convergence order of 1 +
p
2. The quickening without

doing any additional function evaluations, is reached. The main advancement is that

the self-accelerating parameter is built in a straight forward manner.

4.1 Proposed Methods

We proposed the following (4.66) and (4.67) with memory methods involving two

self accelerating parameters:
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Proposed method 1 (NA� 1) : �

wn = rn + q(rn); (4.65)

tn = rn �
q(rn)

q[rn; wn]
;

sn = tn � an(tn � rn)2;

un = sn �
q(sn)

q[rn; sn] + q[sn; wn]� q[rn; wn]
;

vn = un � bn(un � sn)2;

rn+1 = vn �
q(vn)

q[rn; vn] + q[vn; wn]� q[rn; wn]
:

where the self accelerating parameter an and bn given by

an =
tn�1 � rn
(rn � rn�2)2

; (4.66)

bn =
un�1 � sn
(sn � sn�1)2

:

Proposed method 2 (NA� 2) : �

With another set of following accelerating parameter, an and bn, we have numerical

method 2:

an =
(tn�1 � rn)(sn�1 � rn�1)

(rn � rn�1)3
; (4.67)

bn =
(un�1 � sn)(vn�1 � sn�1)

(sn � sn�1)3
:
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We compare our methods namely (NA�1) and (NA�2) (4.65) ,(4.66) and (4.67)

with ZG(4.59), WG (4.60), PT (4.63) and RN (4.64) by Zheng [52] , Wang et al. [16]

[20] ,[53], and Petkovic [56], respective to solve the following non-linear equations

with initial guess r0 :

q1(r) = cos r � r; r0 = 0:5

q2(r) = 10re�r
2 � 1; r0 = 1:8

q3(r) = sin r � 1
3
r; r0 = 2:0:

The numerical results are shown in the tables 1-3. The tables 1-3 represent

jrk � rk�1j as the absolute error and @ as the computational order of convergence.

We take initial guesses a0 = 0:1, b0 = 0:1 as initial values of parameter in the �rst

iteration.

                     Chapter 5

  Numerical Discussion
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Comparison is given with cited method, on the basis of results of �rst four itera-

tions. The numerical results are computed using 1200 �oating point arithmetic.

The stopping criteria for the iterative process is used as follows :

jrk � rk�1j < 10�500:
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Comparison of q1(r)

Comparison of q1(r)
Method it1 it2 it3 it4 COC
ZG 0:79077� 10�3 0:14418� 10�11 0:25525� 10�40 0:25811� 10�135 3:3039563
WG 0:75634� 10�3 0:25811� 10�15 0:15116� 10�67 0:60634� 10�289 4:2386876
RN 0:30201� 10�4 0:96552� 10�20 0:10086� 10�81 0:12011� 10�329 4:0000000
PT 0:63702� 10�3 0:78493� 10�16 0:57495� 10�70 0:20389� 10�299 4:2384668
NA� 1 0:14444� 10�6 0:27809� 10�45 0:76570� 10�234 0:0 6:3456
NA� 2 0:35674� 10�5 0:41235� 10�51 0:71034� 10�300 0:0 6:3456

Table 1

Comparison of q2(r)

Comparison of q2(r)
Method it1 it2 it3 it4 COC
ZG 0:15866� 10�2 0:46751� 10�9 0:14185� 10�30 0:11659� 10�101 3:3035264
WG 0:10688� 10�2 0:25811� 10�15 0:34580� 10�66 0:35950� 10�283 4:2408357
RN 0:33251� 10�3 0:30709� 10�13 0:22312� 10�53 0:62179� 10�214 4:0000000
PT 0:34882� 10�2 0:10531� 10�10 0:36075� 10�46 0:14899� 10�196 4:2403195
NA� 1 0:26205� 10�6 0:37213� 10�41 0:39421� 10�256 0:16796� 10�498 6:2035
NA� 2 0:56731� 10�4 0:37153� 10�38 0:41760� 10�386 0.0 6:3456

Table 2
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Comparison of q3(r)
Comparison of q3(r)
Method it1 it2 it3 it4 COC
ZG 0:51016� 10�2 0:2611� 10�8 0:52455� 10�29 0:21691� 10�97 3:3040229
WG 0:84480� 10�2 0:96292� 10�11 0:89256� 10�48 0:74204� 10�205 4:2416331
RN 0:14664� 10�4 0:12289� 10�23 0:60662� 10�100 0:36019� 10�405 4:0000000
PT 0:90035� 10�2 0:25682� 10�10 0:87635� 10�46 0:33663� 10�196 4:2410060
NA� 1 0:10623� 10�8 0:28826� 10�59 0:29681� 10�372 0:0 6:5073
NA� 2 0:28026� 10�7 0:31456� 10�72 0:43127� 10�350 0:0 6:3741

Table 3

Tables 1-3 showed that our methods have excellent behaviors as compare to ex-

isting method shown in the table.
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5.1 Discussion

Two with memory methods (NA�1) and (NA�2) involving two self-accelerating

parameters for solving non-linear equations based on Wang and Fan [16] methods are

constructed. Tables 1-3 show that our methods have excellent behavior as compared

to existing methods shown in the tables.

Consider iterative strategies to approximate both the single root and all of the

roots in order to identify the roots and examine both varieties of iterative systems

in this method. There are numerous iterative techniques with various orders of con-

vergence that can be used in the literature to approximate the roots of Ostrowski

determined the e¢ ciency index I of these iterative approaches as I = k
u
where k is

the number of function evaluations per iteration and u is the order of convergence.
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In this dissertation, two with memory methods (NA� 1) and (NA� 2) involving

two self-accelerating parameters for solving non-linear equations based on Wang and

Fan [16] methods are constructed.

6.1 Conclusions

Derivative free methods are the only option when the derivatives are di¢ cult to

compute or the derivatives are zero at certain points. There are so far very few

methods with memory involving self accelerating parameters existing in the litera-

ture. Derivative free and with memory iterative methods involving self-accelerating

parameter have proposed for the solution of distinct roots of single variable nonlinear

equations. The technique of obtaining self-accelerating parameter is based on forth

order iterative methods developed by Wang and Fan [16]. The analysis of numerical

                      Chapter 6

   Concluding Remark
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methods show that with memory methods have stable behavior and fast convergence

as compared to without memory methods using the new methods (NA � 1) and

(NA � 2). The proposed method shows better convergence behavior, e¢ ciency and

accuracy.

6.2 Future Direction

This thesis aims to explore the future direction of distinct roots of nonlinear

equations using modi�ed root �nders in Numerical analysis.

A more derivative free method, with memory involving accelerating parameters

with better convergence order for �nding the distinct roots of non-linear equations,

can be constructed. The self-accelerating parameter may be improved for getting

higher convergence of iterative methods.
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