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ABSTRACT

In this thesis, �rst of all various types of convex functions and fractional inte-

grals, their applications and various related identities and well-known inequalities are

discussed. Then a new identity for di¤erentiable, GA-convex function is established.

Using this identity, Ostrowski type inequalities for fractional integral are developed.

Then, two versions of Ostrowski type inequality for GA-convex di¤erentiable and

bounded function for Hadamard fractional integral are developed. Consequently,

Ostrowski type inequalities for GA-convex nth di¤erentiable bounded function for

Hadamard fractional integral version-I and version-II are generalized. Accordingly,

some applications to special means, such as arithmetic-, geometric-, logarithmic- and

p-logarithmic means in subsequent sections are also provided. Further, Ostrowski type

inequalities for �rst time di¤erentiable and n-time di¤erentiable GA-convex function

via fractional integral are established using power mean inequality. At the end, some

conclusions and recommendations for further research work are provided..
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Chapter 1

Introduction and Preliminaries

1.1 Introduction

Mathematical inequalities of the Ostrowski type link the di¤erence between a

function and its nearest convex function to the function�s second derivative. Named

after the mathematician Alexander Ostrowski, who originally investigated them in

the early 20th century, these inequalities. They now have several applications across

many di¤erent domains and are a signi�cant topic of research in functional analysis.

The basic form of an Ostrowski type inequality is as follows:

jf (x)� g (x) j �M jf 00(x)j:

where g (x) is the closest convex function to f (x), M is a constant, and f (x) is a

function. The inequality asserts that the absolute value of the second derivative of the

function f (x), multiplied by a constant M, determines the boundary of the di¤erence
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between the function f (x) and its closest convex function, g(x).

There are numerous modi�cations and generalisations of Ostrowski type inequali-

ties in addition to their fundamental form. For instance, there are inequalities of the

Ostrowski type that link a function�s second derivative to the distance between the

function and its closest concave function.Additionally, there are inequalities of the Os-

trowski type that link higher order derivatives of a function to the variation between

a function and its closest convex function. For instance, there are inequalities of the

Ostrowski type that connect a function�s fourth derivative to the distance between it

and its nearest convex function.Ostrowski type inequalities have many applications

in various �elds such as approximation theory, numerical analysis, and optimization.

In approximation theory.

Ostrowski type inequalities are used to bound the error between a function and

its closest convex function. In numerical analysis, Ostrowski type inequalities are

used to bound the error between a numerical approximation of a function and the

true function. In optimization, Ostrowski type inequalities are used to bound the er-

ror between a function and its closest convex function, which can be used to improve

the e¢ ciency of optimization algorithms.In addition, Ostrowski type inequalities have

applications in various branches of mathematics and physics, such as di¤erential equa-

tions, partial di¤erential equations, and quantummechanics. In di¤erential equations,

Ostrowski type inequalities are used to bound the error between a solution of a dif-

ferential equation and the true solution. In partial di¤erential equations, Ostrowski
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type inequalities are used to bound the error between a numerical approximation of

a solution of a partial di¤erential equation and the true solution.

Since the writing of the book, Inequalities involving function and their integral

and derivatives by D. S. Mitrinodic, et. al., in 1991 [1] and classical book by Hardy

Little Wood and Polya [2], the subject of integral and di¤erential inequalities grew

very rapidly and signi�cantly. In 1938, the classical integral inequality established by

Ostrowski is given in the form of the following theorem:

Theorem 1 :Let f : [a1; b1] ! R; where I � R with a1 < b1 be a di¤erentiable

mapping on (a1; b1) whose derivative f 0 : (a1; b1)! R is bounded on (a1; b1),

i:e:; jf 0 (t)j �M <1; 8 t 2 [a1; b1]:

Then,we have the following inequality:������f (x)� 1

b1 � a1

b1Z
a1

f(t)dt

������ �
"
1

4
+

�
x� a1+b1

2

�2
(b1 � a1)2

#
(b1 � a1)M; (1.1)

for all x 2 [a1; b1]; where M is some constant:The constant 1
4
is the best possible The

constant 1
4
is sharp in the sense that it can not be replaced by a smaller one.

The inequality (1.1) gives an approximation for upper bound at point x 2 [a1; b1]

of the integral average 1
b1�a1

b1R
a1

f(t)dt by the value f (x).

Recently, several generalization of the Ostrowski type integral inequalities for

mapping of bounded variation and Lipschitzian monotonic, absolutely continuous

and n-times di¤erentiable mappings with error estimates for some special means and
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for some numerical quadrature rules are considered by many authors for fractional

integral as well [3,4]:

1.2 Preliminaries

Here, we present some basic de�nitions and concepts which we will be used

throughout this dissertation.

Convex Function

Convex function is a special type of mathematical function that has certain prop-

erties related to its shape. In functional analysis, the study of convex functions is an

important area of research due to its connections to optimization, equilibrium prob-

lems, and other areas of mathematics and engineering. A function f (x) is said to be

convex [4] if for any two points x and y in the domain of the function and for any �

in the interval [0,1].

A function f :[a1; b1]2 R ! R is said to be convex, if the following inequality

holds:

f (�x+ (1� �) y) � �f (x) + (1� �)f (y) ;

8 x; y 2 [a1; b1] and � 2 [0; 1] :

According to this inequality, the function�s value is always greater than or equal

to the weighted average of the function�s values at x and y, no matter where on the
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line segment between those two points it occurs. To put it another way, the function

never deviates from the line joining x and y.

A convex function always has an upward-facing graph, which means that as one

advances down the x-axis, the graph slopes higher. This characteristic of the function

is known as its "convexity," and it has several signi�cant implications for functional

analysis.

One of the most important implications of convexity is that it allows for e¢ cient

optimization of the function. Because the function never dips below the line connect-

ing any two points, there is always a global minimum of the function. Additionally,

any local minimum of a convex function is also a global minimum, meaning that

optimization algorithms can be stopped as soon as a local minimum is found.

Convex functions also have the useful virtue of being utilised to model equilibrium

issues. Finding a system�s equilibrium state in physics and engineering entails balanc-

ing the forces acting on the system. Because convex functions have the characteristic

of being reduced when the forces operating on the system are in equilibrium, they

can be utilised to represent these equilibrium issues.

Convex functions also have numerous other characteristics that make them sig-

ni�cant in other mathematical disciplines, such as functional analysis. The sum of

two convex functions is also convex because they are closed under addition. They are

also closed under positive scaling, which means that for any positive scaling, if f (x)is

convex, then (a1) (f (x)) is also convex value of a.
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In functional analysis, particularly in the study of Hilbert spaces, convex functions

are very crucial. A unique class of vector space known as a Hilbert space is complete

with regard to an inner product. A function f (x) in a Hilbert space is referred to as

convex if it is the pointwise limit of a series of a¢ ne functions. This characteristic,

known as weak convexity, is a weaker version of convexity than the prior traditional

de�nition.

In summary, convex functions are special type of mathematical functions that have

certain properties related to its shape. They have many important implications in

optimization, equilibrium problems, and other areas of mathematics and engineering.

They play important role in functional janalysis, particularly in the study of Hilbert

spaces and have many properties that make them important in various �elds.

We say that f is concave, if (�f) is convex.

Convex Function with application

Convex functions have several applications in functional analysis, a �eld of math-

ematics concerned with the study of function spaces [5]. Optimization, equilibrium

issues, and the study of Hilbert spaces are some of the most prominent applications

of convex functions in functional analysis.

Equilibrium issues are another major use of convex functions in functional analysis.

Equilibrium issues in physics and engineering require determining the condition of a

system in which the forces operating on it are balanced. Convex functions, which
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have the feature of being minimised when the forces operating on the system are

balanced, may be utilised to describe these equilibrium situations. Convex functions

are also useful in the study of Hilbert spaces.

Convex functions are frequently used in statistics and machine learning to describe

a variety of phenomena, including data distributions and loss functions for model

training. Convex optimization, which is the process of minimising a convex function

subject to constraints, is a common use of convex functions in machine learning.

In summary, convex functions have a wide range of applications in functional

analysis. They are particularly useful in optimization problems, equilibrium problems,

and the study of Hilbert spaces. They are also widely used in machine learning and

statistics. The property of a convex function, that is, it never dips below the line

that connects x and y, implies that there is always a global minimum of the function,

which makes it highly useful in optimization problems. Convex functions can also be

used to model equilibrium problems and in the study of Hilbert spaces.

GA-Convex Function

A function f [a1; b1]� (0;1) ! R is called GA-convex on [a1, b1] [6]; if

f
�
x� y1��

�
� � f(x) + (1� �) f (y) ;

8 x; y 2 [a1; b1] and � 2 [0; 1] :
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h- Convex Function

A function f :[a1; b1]2 R! R is said to be h-convex [5], if the following inequality

holds:

f (h (�)x+ h (1� �) y) � h (�) f (x) + h(1� �) f (y) ;

8x; y 2 [a1; b1] and � 2 [0; 1] :

s- Convex Function

A function f :[a1; b1]2 R! R is said to be s- convex [5], if the following inequality

holds:

f (h (�)x+ h (1� �) y) � h (�) f (x) + h(1� �)f (y) ;

where,

h (�) = �s; h (1� �) = (1� �)s ; 8� 2 [0; 1] ; x; y 2 [a1; b1] :

s-convex functions are also employed in �nancial mathematics. s-convex functions

are used in mathematical �nance to estimate the pricing of �nancial derivatives such

as options and futures. The prices of these derivatives are frequently treated as partial

di¤erential equation solutions, which may be characterised using s-convex functions.

In summary, s-convex functions are a subclass of convex functions with certain

unique qualities that make them valuable in functional analysis and other �elds of

mathematics and engineering. They �nd widespread use in optimization, partial

di¤erential equations, mathematical �nance, optimum control, and other �elds. The
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property of a s-convex function, that is, it dips below the line that connects x and y,

implies that there is always a global minimum of the function, which is unique and

it makes them particularly useful in optimization problems where the goal is to �nd

the global minimum of a function and it is unique. s-convex functions can also be

used to model certain types of partial di¤erential equations, such as the Hamilton-

Jacobi equations, which are used to describe the dynamics of a wide range of physical

systems.

p-Convex Function

Suppose A � (0;1) = R+ and p 2 R = f0gThen, a function f : A! R is called

p-convex [5], if

f
�
[�ap1 + (1� �) a

p
2]

1
p

�
� �f (a1) + (1� �) f (a2)

holds, 8 a1;a2 2 A and � 2 [0; 1] : If the inequality is in opposite direction, then f is

called p-concave.

GA convex Function Integral Inequalities

GA convex function integral inequalities have many applications in various �elds

such as optimization, numerical analysis, and approximation theory [7]. In optimiza-

tion, these inequalities can be used to bound the error between a function and its

closest convex function, which can be used to improve the e¢ ciency of optimization

algorithms. In numerical analysis, these inequalities can be used to bound the error



10

between a numerical approximation of a function and the true function. In approxi-

mation theory, these inequalities can be used to bound the error between a function

and its closest convex function.

In addition, GA convex function integral inequalities have applications in other

areas of mathematics and engineering, such as physics, control theory, and statistics.

In physics, these inequalities can be used to bound the error between a physical

system and its mathematical model. In control theory, these inequalities can be used

to bound the error between a control system and its desired behavior. In statistics,

these inequalities can be used to bound the error between a probability distribution

and its approximating function.

Furthermore, these inequalities have di¤erent versions, such as GA convex func-

tion integral inequalities for higher-order derivatives, GA convex function integral

inequalities for higher-dimensional functions, etc.

GG convex Function Integral Inequalities

GG (Gradient and Gauss-Newton) Convex Function Integral Inequalities are a

type of mathematical inequity that connects a function�s integral [8] and its nearest

convex function to the function�s gradient and Gauss-Newton matrix. These inequal-

ities are obtained using the GG convex approximation approach. These inequalities

are useful in functional analysis, optimization, and other branches of mathematics

and engineering.
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Wheref(x) is a function, g(x) is the convex function closest to f(x); g(x) is

the Gauss-Newton matrix (also known as the Gauss-Newton approximation of the

Hessian), and a1 and b1 are the endpoints of an interval where the inequality holds.

According to the inequality, the di¤erence between the integral of the function f(x)

across the interval (a1; b1).

The Gauss-Newton matrix is a matrix that approximates the Hessian matrix (ma-

trix of second-order partial derivatives) of a function. It is used in optimization, es-

pecially in non-linear least squares problems, where it is a common approximation

to the Hessian. The Gauss-Newton matrix is de�ned as the Jacobian matrix of the

function, multiplied by its transpose.

The concept of the closest convex function to a given function is important in

functional analysis. A convex function is a special type of function that has certain

properties related to its shape. Speci�cally, for any two points x and y in the domain

of the function and for any � in the interval [0; 1]; the following inequality holds:

f (�x+ (1� �) y) � �f (x) + (1� �)f (y) ;

8 x; y 2 [a1; b1] and � 2 [0; 1] :

This inequality asserts that the function�s value at any point on the line segment

between x and y is always larger than or equal to the weighted average of the function�s

values at x and y. In other words, the function never deviates from the line connecting

x and y. The convex function that is closest to a given function f(x) in some way is

the convex function that is closest to f(y). It might be the function that minimises
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the distance between f(x) and the set of convex functions.

GG convex function integral inequalities have many applications in various �elds

such as optimization, numerical analysis, and approximation theory. In optimiza-

tion, these inequalities can be used to bound the error between a function and its

closest convex function, which can be used to improve the e¢ ciency of optimization

algorithms. In numerical analysis, these inequalities can be used to bound the error

between a numerical approximation of a function and the true function. In approxi-

mation theory, these inequalities can be used to bound the error between a function

and its closest convex function.

Fractional Integral

Fractional calculus is a branch of mathematics that deals with the study of deriva-

tives and integrals of fractional order [9]. It is an extension of the traditional calculus

of integer order, which deals with derivatives and integrals of integer order. Fractional

calculus has applications in various �elds such as physics, engineering, and �nance.

The fractional integral is one of the key ideas of fractional calculus. The de�nition

of the fractional integral is the extension of the conventional integral to non-integer

order. It is represented by the symbol
�R
a1

,where � is the order of the integral and a is

the lower limit of integration. There are several di¤erent ways to de�ne the fractional

integral, but one of the most common ways is to use the Riemann-Liouville fractional

integral. The Riemann-Liouville fractional integral of a function f (x) with respect
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to x is de�ned as:

�Z
a1

f (x) dx =

�
1

� (n� �)

� b1Z
a1

(x� a1)(n���1) f (x) dx:

where � is the gamma function, n is a positive integer, and � is the order of the

integral. The lower limit of integration a and the upper limit of integration b are

arbitrary. The Riemann-Liouville fractional integral is a left-sided operator, meaning

that it acts on the function to the left of the integral sign.

One of the properties of the fractional integral is that it is a non-local operator,

meaning that it depends on the values of the function over an interval rather than at

a single point. This is in contrast to the traditional integral, which is a local operator.

This non-locality is a consequence of the fact that the fractional integral is de�ned in

terms of a fractional power of the di¤erence between the integration variable and the

lower limit of integration.

The fractional derivative is another key idea in fractional calculus. The fractional

derivative is the inverse operation of the fractional integral and is de�ned as a non-

integer order extension of the classical derivative. It is represented by the symbol D,

where denotes the order of the derivative. The fractional derivative, like the fractional

integral, may be de�ned in a variety of ways, but one of the most frequent is to

utilise the Riemann-Liouville fractional derivative. A function f(xRiemann-Liouville
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)�s fractional derivative with regard to x is de�ned as:

D�f (x) =

�
d

dx

�n0BBB@
�R
a1

f (t) dt

(x� a1)(n��)

1CCCA :
where n is a positive integer and � is the order of the derivative. The lower limit of

integration a is arbitrary. The Riemann-Liouville fractional derivative is a left-sided

operator, meaning that it acts on the function to the left of the derivative sign.

In addition to the Riemann-Liouville fractional integral and derivative, there are

other ways to de�ne fractional integrals and derivatives such as the Caputo fractional

derivative and the Grunwald-Letnikov fractional derivative. Each of these methods

have their own advantages and disadvantages, and the choice of which method to use

depends on the speci�c application.

Riemann-liouville Integrals

Incorrect integrals of the Riemann-Liouville variety are employed in functional

analysis, a discipline of mathematics concerned with the study of spaces of functions.

These integrals were independently studied in the 19th century by the mathematicians

Bernhard Riemann and Joseph Liouville [10], who are honoured by their names. They

serve to de�ne the Riemann-Liouville concept of a function being di¤erentiable or

integrable.

The basic form of a Riemann-Liouville integral is as follows:Z
ax

n

1 f(t)dt;
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Where n is a positive integer and

�1 < a1 < x <1:

This integral is de�ned as the sum of the de�nite integrals of the function f(t)

over the intervals (a1; x); (a1; x� 1); (a1; x� 2); :::; (a1; a1 + n) multiplied by the cor-

responding fractional power of (x� t):

One of the main applications of Riemann-Liouville integrals is in the study of

fractional calculus. Fractional calculus is the branch of mathematics that deals with

the study of derivatives and integrals of non-integer order. Riemann-Liouville inte-

grals provide a way to de�ne derivatives and integrals of non-integer order, which are

known as fractional derivatives and integrals.

Another important application of Riemann-Liouville integrals is in the study of

di¤erential equations. These integrals can be used to de�ne the solutions of certain

types of di¤erential equations, such as fractional di¤erential equations. These equa-

tions are used to model a wide range of physical systems, such as viscoelastic materials

and anomalous di¤usion processes.

Riemann-Liouville integrals also have applications in other areas of mathematics

and engineering, such as signal processing and control theory. In signal processing,

these integrals are used to de�ne the concept of fractional order �ltering, which is

used to analyze signals that have non-integer power spectral density. In control theory,

Riemann-Liouville integrals are used to de�ne the solutions of fractional order control

systems, which are used to control a wide range of physical systems.
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In summary, Riemann-Liouville integrals are a type of improper integral that are

used in functional analysis. They provide a way to de�ne derivatives and integrals

of non-integer order, which are known as fractional derivatives and integrals. These

integrals have important applications in various �elds such as fractional calculus, dif-

ferential equations, signal processing, and control theory. Riemann-Liouville integrals

are also used to de�ne the solutions of fractional di¤erential equations, fractional or-

der �ltering, and fractional order control systems. These integrals are used to model

a wide range of physical systems and to analyze signals that have non-integer power

spectral density.

Trapezoid Type Inequalities

Trapezoid type inequalities [11] are a class of mathematical inequalities that relate

the di¤erence between a function and its closest convex function to the integral of the

function over an interval. These inequalities are named after the shape of the graph

of a function and its closest convex function, which resembles a trapezoid. They

have important applications in functional analysis, optimization, and other areas of

mathematics and engineering.

The basic form of a trapezoid type inequality is as follows:

jf (x)� g (x) j � (b1 � a1) M
���f 0(x)���

where f (x) is a function, g (x) is the closest convex function to f (x) ;M is a

constant, and a and b are the endpoints of an interval over which the inequality
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holds. The inequality states that the di¤erence between the function f (x) and its

closest convex function g (x) is bounded by the integral of the absolute value of the

�rst derivative of f (x)over the interval (a1; b1);multiplied by a constant M.

The concept of the closest convex function to a given function is important in

functional analysis. A convex function is a special type of function that has certain

properties related to its shape. Speci�cally, for any two points x and y in the domain

of the function and for any � in the interval[0; 1]the following inequality holds:

f (h (�)x+ h (1� �) y) � h (�) f (x) + h(1� �) f (y) ;

8x; y 2 [a1; b1] and � 2 [0; 1] :

According to this inequality, any point on the line segment between x and y

has a function value that is larger than or equal to the weighted average of the

function values at x and y, no matter where it is located. The function never deviates

from the line that joins x and y, in other words. The convex function that is most

similar to f (x) in some way is said to be the closest convex function to the given

function f (x). The function that minimises the distance between the set of convex

functions and f (y), for instance, could be the answer.Trapezoid type inequalities

have many applications in various �elds such as optimization, numerical analysis,

and approximation theory. In optimization, trapezoid type inequalities are used to

bound the error between a function and its closest convex function, which can be used

to improve the e¢ ciency of optimization algorithms. In numerical analysis, trapezoid

type inequalities are used to bound the error between a numerical approximation of a
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function and the true function. In approximation theory, trapezoid type inequalities

are used to bound the error between a function and its closest convex function.

In addition, trapezoid type inequalities have applications in other areas of math-

ematics and engineering, such as physics, control theory, and statistics. In physics,

trapezoid type inequalities are used to bound the error between a physical system

and its mathematical model. In control theory, trapezoid type inequalities are used

to bound the error between a control system and its desired behavior. In statis-

tics, trapezoid type inequalities are used to bound the error between a probability

distribution and its approximating function.

Furthermore, trapezoid type inequalities have di¤erent versions such as, trapezoid

type inequalities for second-order derivatives, trapezoid type inequalities for higher-

order derivatives, trapezoid type inequalities for higher-dimensional functions, etc.

These di¤erent versions of trapezoid type inequalities are used to bound the error

between a function and its closest convex function in di¤erent scenarios and di¤erent

dimensions

Left and Right-sided RL-Integral

Let f 2 L[a1; b1]: The Left and Right sided Riemann-Lioville integral [12]

J�
a+1
f (x) and J�

b�1
f (x)
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of order � � 0 are de�ned by

J�a1+f (x) =
1

�(�)

xZ
a1

(x� �)��1f(�)d�; x > a1; (1.2)

J�b1�f (x) =
1

�(�)

b1Z
x

(�� x)��1f(�)d�; x < b1; (1.3)

respectively, where �(�) is the Gamma function and by convension

J0
a+1
f (x) = J0

b�1
f (x) = f (x) :

Hermite�Hadamard�Mercer inequalities for GA-convex Functions

Hermite-Hadamard-Mercer inequalities are a class of mathematical inequalities

that relate the integral of a function to the integral of its convex hull [11] over a given

interval. These inequalities are named after the mathematicians Charles Hermite,

Jacques Hadamard and JohnMercer, who independently studied them in the 19th and

20th century. They have important applications in functional analysis, optimization,

and other areas of mathematics and engineering, particularly in the context of GA-

convex functions.

The basic form of a Hermite-Hadamard inequality for a GA-convex function is as

follows:

A GA-convex function is a function that is both geodesically convex and Arith-

metic convex. Geodesically convex functions are de�ned over a Riemannian manifold,

and they are convex along any geodesic. Arithmetic convex functions are de�ned over

a vector space, and they are convex with respect to the usual arithmetic operations.
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The Hermite-Hadamard inequality is a special case of the more general Hermite-

Hadamard-Mercer inequality, which relates the integral of a function to the integral

of its convex hull over a given interval. The inequality states that for any function

f (x) that is GA-convex on the interval [a,b] and for any convex function g (x) that

bounds f (x) on the interval [a1; b1] the following inequality holds:Z
ba11 f (x) dx � (b1 � a1)f

�
a1 + b1
2

�
:

A GA-convex function is a function that is both geodesically convex and Arith-

metic convex. Geodesically convex functions are de�ned over a Riemannian manifold,

and they are convex along any geodesic. Arithmetic convex functions are de�ned over

a vector space, and they are convex with respect to the usual arithmetic operations.

This inequality stipulates that the integral of the function over the interval must be

larger than or equal to the product of the interval�s length and the convex function�s

value at the interval�s midpoint, which functions as the function�s boundary.

The Hermite-Hadamard-Mercer inequalities have many important applications in

various �elds such as optimization, numerical analysis, and approximation theory. In

optimization, these inequalities can be used to bound the error between a function and

its convex hull, which can be used to improve the e¢ ciency of optimization algorithms.

In numerical analysis, these inequalities can be used to bound the error between

a numerical approximation of a function and the true function. In approximation

theory, these inequalities can be used to bound the error between a function and its

closest convex function.



21

In functional analysis, the Hermite-Hadamard-Mercer inequalities are used to

study spaces of GA-convex functions and to understand the properties of these func-

tions. These inequalities provide bounds on the integral of a function and its convex

hull, which can be used to understand the smoothness and other properties of the

function. Additionally, these inequalities are used to study the properties of func-

tions de�ned over Riemannian manifolds and vector spaces, which are important in

the study of optimization and other areas of mathematics and engineering.

Hadamard Fractional Integral

Let f 2 L[a1;b1]: Then; the left and right sided Hadamard integral [13] J�a1+f (x)

and J�b1�f (x) of order � � 0 are de�ned by

J�a1+f (x) =
1

�(�)

xZ
a1

ln
�x
u

���1 f(u)
u
du; (1.4)

J�b1�f (x) =
1

�(�)

b1Z
x

ln
�u
x

���1 f(u)
u
du; (1.5)

where

�(�) =

1Z
0

e�uu��1du = (�� 1)!;

by convension

J0a1+f (x) = J
0
b1�f (x) = f (x) :
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Cauchy Schwarz Inequality

If f and g are integrable on (a1;b1), then we have the inequality [13]:

b1Z
a1

jfgj d� �

0@ b1Z
a1

jf j2 d�

1A
1
2
0@ b1Z
a1

jgj2 d�

1A
1
2

: (1.6)

Hölder Inequality

,Hölder�s inequality is a fundamental inequality in functional analysis that relates

the integral of the product of two functions to the integral of the power of their

absolute values [13]. This inequality is named after the German mathematician Otto

Hölder, who introduced it in his paper "Über einen Mittelwertsatz" (On a mean value

theorem) in 1894. Hölder�s inequality has many important applications in various

areas of mathematics and engineering, including functional analysis, optimization,

and numerical analysis.

where f and g are two functions de�ned on the interval [a,b], p and q are positive

exponents such that 1
p
+1
q
= 1, and the integral is taken over the interval [a,b]. The

inequality states that the integral of the product of the two functions is bounded by

the product of the integral of the power of their absolute values raised to the exponent

of 1
p
and 1

q
.

If f and g are integrable on (a1;b1); and let

p; q > 0; p > 1;
1

p
+
1

q
= 1;
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then we have the inequality:

b1Z
a1

jfgj d� �

0@ b1Z
a1

jf jp d�

1A
1
p
0@ b1Z
a1

jgjq d�

1A
1
q

One of the main applications of Hölder�s inequality is in the study of spaces of

functions, such as Sobolev spaces. These spaces are used to study the smoothness of

functions and are important in the study of partial di¤erential equations and other

areas of mathematics and engineering. Hölder�s inequality is used to de�ne the norm

of a function in a Sobolev space and to understand the properties of these spaces.

Hölder�s inequality also has important applications in optimization, where it is

used to bound the error between a function and its closest convex function. In nu-

merical analysis, Hölder�s inequality is used to bound the error between a numerical

approximation of a function and the true function. In approximation theory, Hölder�s

inequality is used to bound the error between a function and its closest convex func-

tion.

In addition, Hölder�s inequality has many applications in other areas of math-

ematics and engineering, such as probability and statistics, signal processing, and

control theory. In probability and statistics, Hölder�s inequality is used to bound the

probability of the product of two random variables. In signal processing, Hölder�s

inequality is used to analyze signals with di¤erent types of singularities. In control

theory, Hölder�s inequality is used to analyze control systems with di¤erent types of

dynamics.
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Minkowski Inequality

If f; g 2 Lp on [a,b] [13]; then������
b1Z
a1

jf + gjp d�

������
1
p

�

0@ b1Z
a1

jf jp d�

1A
1
p
0@ b1Z
a1

jgjp d�

1A
1
p

; (1.7)

where p > 1 and 1
p
+ 1

q
= 1:

Monotonic Function

Let f : X ! [a1;b1] be a real valued function, then,f is said to be monotonic on

[a1;b1], [12] if f is either increasing or decreasing.

Bounded Functions

A function f is said to be bounded on [a1;b1], [12], if there exists a number M ,

such that

jf (x)j �M ; for all x 2 [a1; b1]:

The Space Lp[a1,b1]

The space Lp = Lp[[a1;b1] consists of all p-Lebesgue integrable functions de�ned

on [a1,b1]; [12], Thus f 2 Lp; if and only if:
b1Z
a1

jf (x)jp dx <1:

Lp is a normed space under the normed de�ned by:

jjf jjp =

0@ b1Z
a1

jf (x)jp dx

1A
1
p

; f 2 Lp:
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The Space L1[a1,b1]

The space L1 = L1[a1;b1] consists of all the Lebesgue integrable functions [6]

de�ned on [a1;b1]:Thus, f 2 L1 if and only if:
b1Z
a1

jf (x)j dx <1:

L1 is a normed space under the norm de�ned by:

jjf jj1 =

0@ b1Z
a1

jf (x)j dx

1A ; f 2 L1:

Power Mean Inequality

Let p � 1 [13]and

1

p
+
1

q
= 1:

If f and g are real functions de�ned on [a1,b1] and if jf j ; jgjq are integral functions

on [a1;b1];then

b1Z
a1

jf (x) g (x)j dx �

0@ b1Z
a1

jf (x)j dx

1A1� 1
q
0@ b1Z
a1

jf (x)j jgjq
1A

1
q

: (1.8)

Riemann Integral

If f is Riemann integrable on [a1;b1];

i:e:; f 2 R[a1; b1];

Then we have:
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������
b1Z
a1

f (x) dx

������ �
b1Z
a1

jf (x)j dx:

If f is Riemann integrable on [a1;b1] and ec is such that a1 � ec �b1; then
b1Z
a1

f (x) dx =

ecZ
a1

f (x) dx+

b1Z
a1

f (x) dx:
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Chapter 2

Review of Literature and

Conceptual Framework

In this chapter, we shall discuss di¤erent variants of Ostrowski type inequalities

existing in the literature. We shall also provide here motivation of this research and

a complete framework of this dissertation.

2.1 Existing Literature

� Alomari et. al., [4] proved an inequality for di¤erentiable fuctions on its do-

main and absolute value of its �rst derivative is convex(concave) in the form of

following theorem:

Theorem 2 : Let f : I � (0;1)! R be a di¤erentiable mapping on Io (the interior
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of I) such that f
0 2 L [a1; b1] then a1; b1 2 I with a1 < b1. If

��f 0�� p
p�1 is convex on

[a1; b1], then the following inequality holds:������f (x)� 1

b1 � a1

b1Z
a1

f (x) dx

������ � 1

(b1 � a1)(p+ 1)
1
p

"
(b1 � x)2

 
j(f 0(x))q + (f 0(b1))qj

2

1
q

!

+(x� a1)2
�
j(f 0(x))q + (f 0(a1))qj

2

� 1
q

# 1
2

; (2.1)

� 1

(b1 � a1)(p+ 1)
1
p

;

for each x 2 [a1; b1]; when 1
p
+ 1

q
= 1:

Theorem 3 Let f : I � (0;1) ! R be a di¤erentiable mapping on Io (the interior

of I) such that f
0 2 L [a1; b1] then a1; b1 2 I with a1 < b1. If

��f 0�� p
p�1 is concave on

[a1; b1], then the following inequality holds:������f (x)� 1

b1 � a1

b1Z
a1

f (x) dx

������ � (b1 � a1)
(p+ 1)

1
p

"�
b1 � x
b1 � a1

�2 ����f 0 �b1 + x2
�����

+

�
x� a1
b1 � a1

�2 ����f 0 �a1 + x2
�����
#

(2.2)

for each x 2 [a1; b1], where p > 1:

Theorem 4 Let f : I � (0;1) ! R be a di¤erentiable mapping on Io (the interior

of I) such that f
0 2 L [a1; b1] then a1; b1 2 I with a1 < b1. If

��f 0��q is concave on
[a1; b1], q � 1 and jf 0(x)j �M , then the following inequality holds:������f (x)� 1

b1 � a1

b1Z
a1

f (x) dx

������ � (b1 � a1)
2

"�
b1 � x
b1 � a1

�2 ����f 0 �b1 + 2x3

�����
+

�
x� a1
b1 � a1

�2 ����f 0 �a1 + 2x3

�����
#

(2.3)
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In [12] Yildiz et. al., proved an inequality as follows:

Theorem 5 Let f : I ! R be a di¤erentiable mapping on Io (the interior of I)

such that f
0 2 L [a1; b1] then a1; b1 2 I with a1 < b1: If

��f 0��is convex on [a1; b1] and
x 2 [a1; b1] ; then the following inequality for fractional integral with � > 0 holds:�����(x� a1)� + (b1 � x)�(b1 � a1)�+ 1

�
f (x)� �(�+ 1)

(b1 � x)�+1
�
J�x+f (b1) + J

�
x�f (a1)

�����
� 1

�+ 2

( 
(b1 � x)�+2

(b1 � a1)�+2
+
(x� a1)�+1

(b1 � a1)�+1
�

1

�+ 1
+
b1 � x
b1 � a1

�! ���f 0 (a1)���
+

 
(x� a1)�+2

(b1 � a1)�+2
+
(b1 � x)�+1

(b1 � a1)�+1
�

1

�+ 1
+
x� a1
b1 � a1

�! ���f 0 (b1)���) ; (2.4)

where � is Euler Gamma Function.

Theorem 6 Let f : [a1; b1]! R;be a di¤erentiable mapping on (a1; b1) with a1 < b1

such that f
0 2 L [a1; b1] : If

��f 0��q is convex on [a1; b1] ; q > 1and x 2 [a1; b1], then the

following inequalities for fractional integrals holds:

�����(x� a1)� + (b1 � x)�(b1 � a1)�+1
�
f (x)� � (�+ 1)

(b1 � a1)�+1
[J�x+f (b1) + J

�
x�f (a1)]

����
� 1

(b1 � a1)�+1 (�p+ 1)
1
p

24(b1 � x)�+1 ��f 0 (x)��q + ��f 0 (b1)��q
2

! 1
q

� (x� a1)�+1
 ��f 0 (x)��q + ��f 0 (a1)��q

2

!#
; (2.5)

where 1
p
+ 1

q
= 1; � > 0:

� In 2012, Set [14] obtained some new inequalities of Ostrowski type for mappings

whose derivatives are s-convex in the second sense via fractional integrals. These
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fractional Ostrowski type inequalities are given below in the form of following

theorem:

Theorem 7 Let f : [a1; b1] � [0;1)! R be a di¤erentiable mapping on (a1; b1) with

a1<b1 such that f
0 2 L [a1; b1] : If

��f 0��qis s-concave in the second sense on [a1; b1] for
some �xed s 2 (0; 1] and p; q > 1; then the following inequality for fractional integral

holds:

�����(x� a1)� + (b1 � x)�(b1 � a1)

�
f (x)� �(�+ 1)

(b1 � a1)
�
J�x�f (b1) + J

�
x+f (a1)

�����
� 2(s�1)=q

(1 + p�)
1
p (b1 � a1)

�
(x� a1)�+1

����f 0 �x+ a12

�����+ (b1 � x)�+1 ����f 0 �b1 + x2
������ ;

where 1
p
+ 1

q
= 1; � > 0 and � is Euler Gamma Function.

� In 2012, Liu [5] established some Ostrowski type inequalities involving RL-

fractional integral for h-convex function. He also provided new estimates of

Ostrowski type inequalities for fractional integrates. In this paper, some Os-

trowski type inequalities via Riemann-Liouville fractional integrals for h-convex

functions, which are super-multiplicative or super-additive,are given. These re-

sults not only generalize those of [14], but also provide new estimates on these

types of Ostrowski inequalities for fractional integrals.

Theorem 8 Let h : J � R ! R ([0; 1] � J) be a non-negative and super-

multiplicative function, h (t) � t for 0 � t � 1; f : [a1; b1] � [0;1) ! R

be a di¤erentiable mapping on (a1; b1) with a1 < b1 such that f
0 2 L1 [a1:b1] :



31

If
��f 0��is h-convex on [a1; b1] and ��f 0 (x)�� � M; x 2 [a1; b1] ; then the following

inequalities for fractional integral with � > 0 holds:

�����(x� a1)� + (b1 � x)�b1 � a1

�
f (x)� � (�+ 1)

b1 � a1
[J�x�f (a1) + J

�
x+f (b1)]

����
�

M
�
(x� a1)�+1 + (b1 � x)�+1

�
b1 � a1

1Z
0

[t�h (t) + t�h (1� t)] dt (2.6)

�
M
�
(x� a1)�+1 + (b1 � x)�+1

�
b1 � a1

1Z
0

�
h
�
t�+1

�
+ h (t� (1� t))

�
dt: (2.7)

In Theorem 1, if we choose h(t) = t, then (2.6) and (2.7) reduce the inequality

in [14].

Corollary 9 Let h : J � R ! R ([0; 1] � J)be a non-negative and super-

additive function,and f : [a1; b1] � [0;1) ! Rbe a di¤erentiable mapping on

(a1; b1) with a1 < b1 such that f
0 2 L1 [a1; b1] : If

��f 0��q is h-convex function on
[a1; b1] ; p; q > 1; 1

p
+ 1

q
= 1; and

��f 0 (x)�� � M; x 2 [a1; b1] then the following

inequalities for the fractional integral with � > 0 holds:

�����(x� a1)� + (b1 � x)�b1 � a1

�
f (x)� � (�+ 1)

b1 � a1
[J�x�f (a1) + J

�
x+f (b1)]

����
�

M
�
(x� a1)�+1 + (b1 � x)�+1

�
(1 + p�)

1
p (b1 � a1)

0@ 1Z
0

[h (t) + h (1� t)]

1A
1
q

�
M
�
(x� a1)�+1 + (b1 � x)�+1

�
(1 + p�)

1
p (b1 � a1)

h
1
q (1) : (2.8)
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Corollary 10 If we choose h(t) = ts; s 2 (0; 1];in Theorem 8, then we have�����(x� a1)� + (b1 � x)�b1 � a1

�
f (x)� � (�+ 1)

b1 � a1
[J�x+f (b1) + J

�
x�f (a1)]

����
� M

(1 + p�)
1
p

�
2

s+ 1

� 1
q (x� a1)�+1 + (b1 � x)�+1

b1 � a1
; (2.9)

due to the fact that
1Z
0

[h (t) + h (1� t)] dt = 2

s + 1
: (2.10)

This is the inequality established in ( [15], Theorem 8.)

� In 2014, Alginevic [16] gave Ostrowski type inequalities for fractional integrals

for function whose fractional derivatives belong to Lp spaces in the form of

following theorem:

Theorem 11 Suppose that all the assumptions of Theorem 1 holds. Addition-

ally, assume that (p,q) is a pair of conjugate exponents; that is 1� p; q �

1; (1=p) + (1=q) = 1;and f0 2 Lp [a1; b1] : Then the following inequalities holds:����f (x)� � (�+ 1)

(g (b1)� g (a1))�
J�b1;gf (b1)

���� � jjP4 (x; t)jjq jjf 0jjp0 (2.11)

where the q-norm is calculated with respect to variable t.

The constant jjP4 (x; t)jjq is sharp for 1< p � 1 and the best possible for p=1,

where

P4 (x; t) =

�1� � g(b1)�g(t)
g(b1)�g(a1)

��
a1 � t � x;

�
�
g(b1)�g(t)
g(b1)�g(a1)

��
x < t � b1;

(2.12)

a1J
�
x;gf (x) =

1

� (�)

xZ
a1

(g (x)� g (t))��1 g0 (t) f (t) dt



33

is the following integral of order a > 0 of a function f with respect to another

function g.

� In 2017, Farid, G. [3] found a new version of Ostrowski type inequalities for

RL-fractional integrals.

Fractional Ostrowski Type Inequality.Remaining within the assumption of

Ostrowski inequality following more general inequality is observed.

Theorem 12 Under the assumption of Theorem 1 we have:

���f (x)�(b1 � a1)� + (x� a1)��� �� (� + 1) I�b�1 f (x) + � (�+ 1) I�a+1 f (x)����
� M

�
�

� + 1
(b1 � a1)�+1 +

�

�+ 1
(x� a1)��1

�
; x 2 [a1; b1] : (2.13)

where �; � > 0:

Theorem 13 Let f : I ! R; where I is an interval in R be a di¤erentiable in I0;the

inyerior of I and a, b 2 I0; a1 < b1: If m < f
0
(t) �M for all t 2 [a1; b1] ;then we have

�
(x� a1)� + (b1 � x)�

�
f (x)�

�
� (�+ 1) I�

a+1
f (x) + � (� + 1) I�

b�1
f (x)

�
<

M�

�+ 1
(x� a1)��1 �

m�

� + 1
(b1 � a1)�+1 ; x 2 [a1; b1] : (2.14)

and

�
(x� a1)� + (b1 � x)�

�
f (x)�

�
� (�+ 1) I�

a+1
f (x) + � (� + 1) I�

b�1
f (x)

�
� M

�
�

� + 1
(b1 � a1)�+1 +

�

�+ 1
(x� a1)��1

�
; x 2 [a1; b1] : (2.15)

where �; � > 0:
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Theorem 14 Under the assumption of Theorem 1 we have����(b1 � x)� + (x� a1)��� �� (� + 1) I�x+f (b1) + � (�+ 1) I�x�f (a1)����
� M

�
�

� + 1
(b1 � x)�+1 +

�

�+ 1
(x� a1)��1

�
; x 2 [a1; b1] (2.16)

where �; � > 0:

� In 2017, Dragomir [17], introduced several generalizations of Ostrowski type in-

equalities involving RL fractional integrals of bounded variations and of H½older

continuous functions in the form of following theorem:

Theorem 15 Assume that f : [a1; b1] ! C is r-H- HÖlder continuous functions on

[a1; b1] with r 2 (0; 1] and H > 0 and g is a strictly increasing on (a1; b1) ; having a

continous derivative g
0
on (a1; b1) : Then,

(i) For any x � (a1; b1) ; we have the inequalites:����I�a+1 ;gf (x) + I�b�1 ;gf (x)� 1

� (�+ 1)
([g (x)� g(a1)]� + [g(b1)� g (x)]�) f (x)

����
� H

� (�)

24 xZ
�

g
0
(t) (x� t)r dt

[g (x)� g(t)]1��
+

b1Z
x

g
0
(t) (t� x)r dt

[g(t)� g (x)]1��

35
� H

� (�+ 1)
j[g (x)� g(a1)]� (x� a1)r + [g(b1)� g (x)]� (b1 � x)rj ; (2.17)

and ����I�x�; g f (a1) + I�x+; g f (b1)� 1

� (�+ 1)
([g (x)� g(a1)]� + [g(b1)� g (x)]�) f (x)

����
� H

� (�)

24 xZ
�

g
0
(t) (x� t)r dt

[g(t)� g(a1)]1��
+

b1Z
x

g
0
(t) (t� x)r dt

[g(b1)� g(t)]1��

35
� H

� (�+ 1)
j[g (x)� g(a1)]� (x� a1)r + [g(b1)� g (x)]� (b1 � x)rj (2.18)
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(ii) We have the inequalities������
I�
b�1 ; g

f (a1) + I
�
a+1 ;g

f (b1)

2
� 1

� (�+ 1)
[g(b1)� g(a1)]�

f (b1) + f (a1)

2

������
� H

2� (�)

24 b1Z
�

g
0
(t) (b1 � t)r dt

[g(b1)� g(t)]1��
+

b1Z
a1

g
0
(t) (t� a1)r dt

[g(t)� g (x)]1��

35
� H

� (�+ 1)
(b1 � a1)r [g(b1)� g(a1)]� : (2.19)

Corollary 16 With the assumption of Theorem 15, we have:����I�a1j;g f (Mg (c; b1)) + I
�
b1j;g f (Mg (a1; b1))�

[g (b1)� g [a1]�]
2��1� (�+ 1)

f (Mg (a1; b1))

����
� H

� (�)

264 Mg(a1;b1)Z
c

g
0
(t) (Mg (a1; b1)� t)r dt

[g (Mg (a1; b1))� g (t)]1��
+

b1Z
Mg(a1;b1)

g
0
(t) (t�Mg (a1; b1))

r dt

[g (t)� g (Mg (a1; b1))]
1�� ;

375
� H

2�� (�+ 1)
[g (b1)� g (a1)]� [(Mg (a1; b1)� a1)r + (b1 �Mg (a1; b1))

r] ;

and ����I�Mg(a1;b1)�g f (a1) + I
�
Mg(a1;b1)+g

f (b1)�
[g (b1)� g [a1]�]
2��1� (�+ 1)

f (Mg (a1; b1))

����
� H

� (�)

264 Mg(a1;b1)Z
c

g
0
(t) (Mg (a1; b1)� t)r dt
[g (t)� g (a1)]1��

+

b1Z
Mg(a1;b1)

g
0
(t) (t�Mg (a1; b1))

r dt

[g (b1)� g (t)]1��

375
� H

2�� (�+ 1)
[g (b1)� g (a1)]� [(Mg (a1; b1)� a1)r + (b1 �Mg (a1; b1))

r] : (2.20)

It has also obserevd that the inequalities have applications for the geometric mean that

is

for x = G (a1; b1) =
p
a1b1;

of two numbers. Moreover, some particular cases for Hadamard fractional integrals

are also discussed in [17].
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� In 2018, Yildiz [18] and Set obtained some new Ostrowski type inequalities for

generalized fractional integral operators as follows:

Theorem 17 Let f : [a1; b1] � R be a di¤erentiable on (a1; b1) and
��f 0 (x)�� �M; for

every x 2 [a1; b1]: Then, the following generalized Ostrowski type fractional integral

operators inequality holds:

����' (b1 � a1)b1 � x
f (x)�a+1 I' (P1 (x; b1) f (b1))�

1

(b1 � a1) a+I'f(b1)

���� � = (2.21)

where P1 (x; t) is the Peano kernal and

= := M

b1 � a1

24 xZ
a1

����' (b1 � t)b1 � t

���� (t� a1)dt�
b1Z
x

����' (b1 � t)b1 � t

���� (b1 � t)dt
35 : (2.22)

We shall here, however generalize Ostrowski type inequalities for GA- convex

functions involving fractional integrals. We shall further establish some new inequal-

ity which will be generalization of many Ostrowski type inequalities existing in the

literature.

� In 2012, Set [14] obtained some new inequalities of Ostrowski type for mappings

whose derivatives are s-convex in the second sense via fractional integrals. These

fractional Ostrowski type inequalities are given below in the form of following

theorem:

Theorem 18 Let f :[a1, b1]� [0;1) ! R be a di¤erentiable mapping on (a1 ; b1 )

with a1<b1 such that f
0 2 L[a1,b1]: If

��f 0��qis s-concave in the seconed sense on [a1,b1]
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for some �xed s 2 (0; 1] and p; q > 1; then the following inequality for fractional

integral holds:

�����(x� a1 )� + (b1 � x)�(b1 � a1 )

�
f (x)� �(�+ 1)

(b1 � a1 )
�
J�x�f (b1 ) + J

�
x+f (a1 )

�����
� 2(s�1)=q

(1 + p�)
1
p (b1 � a1 )

�
(x� a1 )�+1

����f 0 �x+ a12

�����
+(b1 � x)�+1

����f 0 �b1 + x2
������ : (2.23)

where 1
p
+ 1

q
= 1; � > 0 and � is Euler Gamma Function.

We shall here, however generalize Ostrowski type inequalities for GA- convex

functions involving fractional integrals. We shall further establish some new inequal-

ity which will be generalization of many Ostrowski type inequalities existing in the

literature.

2.2 General Concept

Some authors proved Ostrowski type inequality for the class of convex function

via fractional integral [5,18].

Motivated by the above results, a new identity for a di¤erentiable, GA-convex

function is established. With the aid of this identity, we create inequalities of the

Ostrowski type for fractional integral. In order to account for this, we generalise Os-

trowski type inequalities for GA-convex �rst and nth di¤erentiable bounded functions

for fractional integral. As a result, some applications are also provided in the sections
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that follow. A power mean inequality of the Ostrowski type is also established at the

conclusion.

� In chapter-3, a new identity for Ostrowski type inequality for GA-convex func-

tion is established. Then, two versions of Ostrowski type inequality for GA-

convex di¤erentiable and bounded function for fractional integral are also de-

veloped.

� In chapter-4, these inequalities are generalized to nth di¤erentiable GA-convex

bounded function and application to special means is also discussed.

� In chapter-5, Ostrowski type inequalities for �rst time di¤erentiable and n-time

di¤erentiable GA-convex function fractional integral are established using power

mean inequality. The inequalities of chapter-3 and chapter-4 are its special

cases.

� At the end, some conclusions and recommendations for further research work

are provided in chapter 6.
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Chapter 3

Ostrowski Type Inequalities for

Fractional Integral

In recent years, researchers have made numerous modi�cations in classical Os-

trowski type integral inequality and applied it to reduce error bound in numerical

integration.

Here, in this chapter new identity is constructed for Ostrowski type inequality for

GA-convex function which helps us to develop two new versions of Ostrowski type

inequality for GA-convex di¤erentiable and bounded function for fractional integral.
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3.1 A New Identity for Ostrowski Type Inequality

for GA-Convex Function

To prove our main results, the following identity for Lebesgue integrable functions

de�ned on [a,b] is established in the form of a lemma as follows:

Lemma 19 Let f : I � R ! R be di¤erentiable mapping on I� (I� is interior of I)

such that f (x) 2 L[a1,b1]; then

f (x) =
1

(ln b1 � ln a1)

h
Jb�1 f (x)� Ja+1 f (x)

i
(3.1)

Proof. Let

p (�) =

8>><>>:
�; � 2

h
0; ln(b1=x)

ln(b1=a1)

i
�� 1; � 2

�
ln(b1=x)
ln(b1=a1)

; 1
i (3.2)

then, applying de�nition of function (3.2) in the integral we have:

I =

1Z
0

p (�) df
�
a�1 b

1��
1

�

=

ln(b1=x) = ln(b1=a1)Z
1

�df
�
a�1 b

1��
1

�
+

1Z
ln(b1=x)= ln(b1=a1)

(�� 1) df
�
a�1 b

1��
1

�
:(3.3)

On integrating (3.3) by parts we have:

I =
�f
�
a�1 b

1��
1

�����ln(b1=x)= ln(b1=a1)
0

�
ln(b1=x)= ln(b1=a1)Z

0

f
�
a�1 b

1��
1

�
d�

+(�� 1) f
�
a�1 b

1��
1

�����1
ln(b1=x)= ln(b1=a1)

�
1Z

ln(b1=x)= ln(b1=a1)

f
�
a�1b

1��
1

�
d�
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On applying limit of integrals, we have:

I = [ln (b1=x ) = ln (b1=a1)� ln (a1=x) = ln (b1=a1)] f (x)

�
ln(b1=x)= ln(b1=a1)Z

0

f
�
a�1b

1��
1

�
d��

1Z
ln(b1=x)= ln(b1=a1)

f
�
a�1b

1��
1

�
d�

= f (x)�
ln(b1=x)= ln(b1=a1)Z

0

f
�
a�1 b

1��
1

�
d��

1Z
ln(b1=x)= ln(b1=a1)

f
�
a�1 b

1��
1

�
d� (3.4)

Changing variables, we have:

u = a1 � b1
1��

if � = 0, then u = b1

and if � = 1; then u = a1.

Further,

lnu = ln
�
a�1 b

1��
1

�
= � ln a1 + (1� �) ln b1;

this implies

lnu = � ln (a1=b1) + ln b1

1

u
du = ln (a1=b1) d�

d� =
1

u ln (a1=b1)
du:

Therefore, from (3.4) we have:which is the required identity.
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3.2 Ostrowski Type Inequality for Fractional Inte-

gral (Version-I)

Consider, f
0
is GA-convex and bounded on interval [a1,b1] for arbitrary di¤er-

entiable mapping f with a1 < b1. Then, we have �rst version of Ostrowski type

inequality for fractional integrals in the form of following theorem:.

Theorem 20 Let f : I ! R be a di¤erentiable mapping on Io then a1; b1 2 I with

a1 < b1, such that f
0 2 L[a1, b1]: If f

0
is GA-convex on [a1,b1] and bounded, then:����f (x)� 1

ln (b1=x ) = ln (b1=a1)

h
Jb�1 f (b1) + Ja

+
1
f (a1)

i����
� b1 ln (a1=b1)

h
B (a1=b1; 2; 0) + C (a1=b1; 1; 1)

���f 0 (a1)���
+B (a1=b1; 1; 1) + C (a1=b1; 0; 2)

���f 0 (b1)���i ; (3.5)

where,

B (u,m,n) =

ln(b1=x)= ln(b1=a1)Z
0

u��m (�� 1)n d�;

C (u,m,n) =

1Z
ln(b1=x)= ln(b1=a1)

u��m (�� 1)n d�

and ���f 0 (a1)��� �M1;
���f 0 (b1)��� �M2:
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Proof. Now,

I =

ln(b1=x)= ln(b1=a1)Z
0

�df
�
a�1 b

1��
1

�
+

1Z
ln(b1=x)= ln(b1=a1)

(�� 1) df
�
a�1 b

1��
1

�

=

ln(b1=x)= ln(b1=a1)Z
0

�f
0 �
a�1 b

1��
1

�
d
�
a�1 b

1��
1

�

+

1Z
ln(b1=x)= ln(b1=a1)

(�� 1) f 0
�
a�1 b

1��
1

�
d
�
a�1 b

1��
1

�

=

ln(b1=x)= ln(b1=a1)Z
0

�f
0 �
a�1 b

1��
1

� �
a�1 b

1��
1

�
(ln a1 � ln b1) d�

+

1Z
ln(b1=x)= ln(b1=a1)

(�� 1) f 0
�
a�1 b

1��
1

� �
a�1 b

1��
1

�
(ln a1 � ln b1) d�

= b1 ln (a1=b1)

ln(b1=x)= ln(b1=a1)Z
0

(a1=b1)
� �f

0 �
a�1 b

1��
1

�
d�

+b1 ln (a1=b1)

1Z
ln(b1=x)= ln(b1=a1)

(a1=b1)
� (�� 1) f

0 �
a�1 b

1��
1

�
d�:
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This implies

jIj � b1 ln(a1=b1)

0@ ln(b1=x)= ln(b1=a1)Z
0

(a1=b1)
� �:

h
�
���f 0 (a1)���+ j1� �j ���f 0 (b1)���i d�

+

1Z
ln(b1=x)= ln(b1=a1)

(a1=b1)
� j�� 1j :

h
�
���f 0 (a1)���+ j1� �j ���f 0 (b1)���i d�

1CA
= b1 ln(a1=b1)

24 ln(b1=x)= ln(b1=a1)Z
0

�
(a1=b1)

��2jf 0(a1)j+ (a1=b1)�� j�� 1j+ jf 0(b1)j
�
d�

+

1Z
ln(b1=x)= ln(b1=a1)

�
(a1=b1)

�� j�� 1j jf 0(a1)j+ (a1=b1)�(�� 1)2
���f 0(b1)��� d��

375 ;
= b1 ln(a1=b1)

264
0B@ ln(b1=x)= ln(b1=a1)Z

0

(a1=b1)
��2d�+

1Z
ln(b1=x)= ln(b1=a1)

�
(a1=b1)

�� j�� 1j d�
�1CA jf 0(a1)j

+

0BBB@
ln(b1=x)= ln(b1=a1)R

0

((a1=b1)
��j�� 1j)d�

+
1R

ln(b1=x)= ln(b1=a1)

�
(a1=b1)

�j�� 1j2
�
d�

1CCCA jf 0(b1)j
37775 : (3.6)

If

B (u;m; n) =

ln(b1=x)= ln(b1=a1)Z
0

u��m (�� 1)n d�;

C (u;m; n) =

1Z
ln(b1=x)= ln(b1=a1)

u��m (�� 1)n d�;

then

I � b1 ln (a1=b1)
h
fB (a1=b1; 2; 0) + C (a1=b1; 1; 1)g

���f 0 (a1)���
+ fB (a1=b1; 1; 1) + C (a1=b1; 0; 2)g

���f 0 (b1)���i :
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Combining (3.1) and (3.6) give us the required result (3.5) i.e.,

jI j � b1 ln (a1=b1) ([B (a1=b1; 2; 0) + C (a1=b1; 1; 1)] jM1j

+ [B (a1=b1; 1; 1) + C (a1=b1; 0; 2)] jM2j) ;

where, ���f 0 (a1)��� �M1;

���f 0 (b1)��� �M2:

3.3 Ostrowski Type Inequality for Fractional Inte-

gral (Version-II)

The inequality is given in the form of the following theorem:

Theorem 21 Let f : I ! R be a di¤erentiable mapping on Io then a1; b1 2 I with

a1 < b1, such that f
0 2 L[a1, b1]: If f

0
is GA-convex on [a1,b1] and bounded, and

x 2[a1,b1]; then the following inequality for Hadamard fractional integral holds.��� (ln(b1=x))�+(ln(x=a1))�(ln(b1=a1))
� f (x)� �(�+1)

(ln(b1=a1))
�

h
J�
b�1
f (b1) + J

�
a+1
f (a1)

i���
� b1 ln (a1=b1)

�
[B (a1=b1; �+ 1; 0) + C (a1=b1; 1; �)]

��f 0 (a1)��
+ [B (a1=b1; �; 1) + C (a1=b1; 0; �+ 1)]

��f 0 (b1)��� ;
(3.7)

where, ���f 0 (a1)��� �M1;
���f 0 (b1)��� �M2:
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Proof. Let

p (�) =

8>><>>:
��; � 2

h
0; ln(b1=x)

ln(b1=a1)

i
(�� 1)� ; � 2

�
ln(b1=x)
ln(b1=a1)

; 1
i

Then

I =

1Z
0

p (�) df
�
a�1b

��1
1

�

=

ln(b1=x)= ln(b1=a1)Z
0

��d
�
f
�
a�1 b

1��
1

��
+

1Z
ln(b1=x)= ln(b1=a1)

(�� 1)�d
�
f
�
a�1b

(��1)
1

��

=
��f

�
a�1b

��1
1

�����ln(b1=x)= ln(b1=a1)
0

�
ln(b1=x)= ln(b1=a1)Z

0

�f
�
a�1b

(��1)
1

�
(�)��1 d�

+(�� 1)� f(a�1b��11 )

����1
ln(b1=x)= ln(b1=a1)

�
1Z

ln(b1=x)= ln(b1=a1)

�f
�
a�1b

��1
1

�
(�� 1)� d�

=

�
ln (b1=x )

ln (b1=a1)

��
f (x)�

�
ln (b1=x )

ln (b1=a1)
� 1
��
f (x)

��
ln(b1=x)= ln(b1=a1)Z

0

f
�
a�1 b

1��
1

�
���1d�

��
1Z

ln(b1=x)= ln(b1=a1)

f
�
a�1 b

1��
1

�
(�� 1)��1 d�

=

��
ln (b1=x )

ln (b1=a1)

��
�
�
ln (x=a1)

ln (b1=a1)

���
f (x)� �

ln(b1=x)= ln(b1=a1)Z
0

���1f
�
a�1 b

1��
1

�
d�

��
1Z

ln(b1=x)= ln(b1=a1)

(�� 1)��1 f
�
a�1 b

1��
1

�
d�
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=
(ln b1 � lnx)� + (lnx� ln a1)�

(ln (b1=a1))
� f (x)� �

ln(b1=x)= ln(b1=a1)Z
0

���1f
�
a�1 b

1��
1

�
d�

��
1Z

ln(b1=x)= ln(b1=a1)

(�� 1)��1 f
�
a�1 b

1��
1

�
d�

=
(ln (b1=x ))

� + (ln (x=a1))
�

(ln (b1=a1))
� f (x)� �

ln(b1=x)= ln(b1=a1)Z
0

���1f
�
a�1 b

1��
1

�
d�

��
1Z

ln(b1=x)= ln(b1=a1)

(�� 1)��1 f
�
a�1 b

1��
1

�
d� (3.8)

On changing of variables, we have :

If u = a�1 b
1��
1 then

for � = 0; u = b1

and for � = 1; u = x;

� =
ln (u=b1)

ln (a1=b1)
=
ln (b1=u)

ln (b1=a1)

d� =
du

u ln (a1=b1)
;

�� 1 =
ln (a1=u)

ln (b1=a1)
:

Using these in (3.8), we have:

I =
(ln(b1=x ))

� + (ln(x=a1))
�

(ln(b1=a1))
� f (x)� ��(�) 1

�(�)

xZ
b1

�
ln(b1=u)

ln(b1=a1)

���1
f(u)

u ln(a1=b1)
du

���(�) 1

�(�)

a1Z
x

�
ln(a1=u)

ln(b1=a1)

���1
f(u)

u ln(a1=b1)
du
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=
(ln(b1=x ))

� + (ln(x=a1))
�

(ln(b1=a1))
� f (x)� �(�+ 1) 1

�(�)

xZ
b1

�
ln(b1=u)

ln(b1=a1)

���1
f(u)

u ln(a1=b1)
du

��(�+ 1) 1

�(�)

a1Z
x

�
ln(a1=u)

ln(b1=a1)

���1
f(u)

u ln(a1=b1)
du

=
(ln(b1=x ))

� + (ln(x=a1))
�

(ln(b1=a1))
� f (x)� �(�+ 1)

(ln(b1=x ))
�

h
J�
b�1
f(b1) + J

�
a+1
f(a1)

i
: (3.9)

From identity (3.1) and since jf 0jis GA-convex function,we have (3.9) as follows:

I =

ln(b1=x)= ln(b1=a1)Z
0

��f 0(a�1 b
1��
1 )d(a�1 b

1��
1 )

+

1Z
ln(b1=x)= ln(b1=a1)

(�� 1)�f 0(a�1 b1��1 )d(a�1 b
1��
1 )

=

ln(b1=x)= ln(b1=a1)Z
0

��f 0(a�1 b
1��
1 )a�1 b

1��
1 (ln a1 � ln b1)d�

+

1Z
ln(b1=x)= ln(b1=a1)

��f 0(a�1 b
1��
1 )(a�1 b

1��
1 )(ln a1 � ln b1)d�

=

ln(b1=x)= ln(b1=a1)Z
0

��f 0(a�1 b
1��
1 ) (a1=b1)

� b1(ln a1 � ln b1)d�

+

1Z
ln(b1=x)= ln(b1=a1)

(�� 1)�f 0(a�1 b1��1 ) (a1=b1)
� b1(ln a1 � ln b1)d�

= b1 ln(a1=b1)

ln(b1=x)= ln(b1=a1)Z
0

��f 0(a�1 b
1��
1 ) (a1=b1)

� d�

+b1 ln(a1=b1)

1Z
ln(b1=x)= ln(b1=a1)

(�� 1)�f 0(a�1 b1��1 ) (a1=b1)
� d�
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= b1 ln(a1=b1)

ln(b1=x)= ln(b1=a1)Z
0

�� (a1=b1)
�
h
�jf 0(a1)j+ (�� 1)jf 0(b1)j

i
d�

+b1 ln(a1=b1)

1Z
ln(b1=x)= ln(b1=a1)

(�� 1)� (a1=b1)�
h
�jf 0(a1)j+ (�� 1)jf 0(b1)j

i
d�

= b1 ln(a1=b1)

ln(b1=x)= ln(b1=a1)Z
0

��+1 (a1=b1)
� jf 0(a1)jd�+ b1 (ln(a1=b1))

+

ln(b1=x)= ln(b1=a1)Z
0

��(�� 1) (a1=b1)� jf
0
(b1)jd�

+b1 ln(a1=b1)

1Z
ln(b1=x)= ln(b1=a1)

(a1=b1)
� �(�� 1)�jf 0(a1)jd�

+b1 ln(a1=b1)

1Z
ln(b1=x)= ln(b1=a1)

(a1=b1)
� (�� 1)�+1jf 0(b1)jd�: (3.10)

Now Consider the functions as follows:

B (u;m; n) =

ln(b1=x)= ln(b1=a1)Z
0

u��m(�� 1)nd�

C (u;m; n) =

1Z
ln(b1=x)= ln(b1=a1)

u��m(�� 1)nd�:

Thus, we have (3.10) as follows:

jIj � b1 ln (a1=b1)B (a1=b1; �+ 1; 0)
���f 0 (a1)���+ b1 ln (a1=b1)B (a1=b1; �; 0) ���f 0 (b1)���

+b1 ln (a1=b1)C (a1=b1; 1; �)
���f 0 (a1)���+ b1 ln (a1=b1)C (a1=b1; 0; �+ 1) ���f 0 (b1)��� :

This implies

jIj � b1 ln (a1=b1) [B (a1=b1; �+ 1; 0) + C (a1=b1; 1; �)]
���f 0 (a1)���

+b1 ln (a1=b1) [B (a1=b1; �; 1) + C (a1=b1; 0; �+ 1)]
���f 0 (b1)��� :
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Since f
0
is bounded, let

jf 0(a1)j �M1 and jf
0
(b1)j �M2:

Putting in above and combining it with (3.9) gives the required result, i.e.,

jIj =
����(ln (b1=x ))� + (ln (x=a1))�(ln (b1=a1))

� f (x)� �(�+ 1)

(ln (b1=a1))
�

h
J�
b�1
f (b1) + J

�
a+1
f (a1)

i����
� b1 ln (a1=b1)

h
[B (a1=b1; �+ 1; 0) + C (a1=b1; 1; �)]

���f 0 (a1)���
+ [B (a1=b1; �; 1) + C (a1=b1; 0; �+ 1)]

���f 0 (b1)���i :
Hence theorem is proved.

Corollary 22 For � = 1; in Theorem 21 we get the basic Ostrowski type inequality(1.1).
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Chapter 4

Ostrowski Type Inequality for nth

Di¤erentiable GA-Convex

Bounded Function for Fractional

Integral

New identity for a di¤erentiable, GA-convex function is established in chapter 3.

With the aid of this identity, inequalities of the Ostrowski type for fractional integral

also developed. In order to account for this, we generalise Ostrowski type inequalities

for GA-convex �rst and nth di¤erentiable bounded functions for fractional integral.

As a result, some applications are also provided in the sections that follow. A power

mean inequality of the Ostrowski type is also established at the conclusion.
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In order to prove the Ostrowski type inequalities for nth di¤erentiable function for

fractional integral, we �rst prove the following lemma:

Lemma 23 Let f : I � R! R be on nth di¤erentiable mapping on I� where a1; b1 2 I

with a1 < b1 such that f (n) (x) 2 L[a1,b1];then for all [a1,b1] and � > 0;we have:

(ln (b1=x ))
� + (ln (x=a1))

�

(ln (b1=a1))
� f (n�1)(x)

� �(�+ 1)

(ln (b1=a1))
�

�
J�b1�

�
f (n�1) (b1)

�
+ J�a1+

�
f (n�1) (a1)

��
=

1Z
0

p (�) d
�
f (n�1)

�
a�1 b

1��
1

��
; (4.1)

where,

p (�) =

8>><>>:
��; � 2 [0; ln (b1=x ) = ln (b1=a1)]

(�� 1)� � 2 [ln (b1=x ) = ln (b1=a1) ; 1]
:

Proof. Here,

I =

1Z
0

d
�
f (n�1)

�
a�1 b

1��
1

��

I =

ln(b1=x)= ln(b1=a1)Z
0

��d
�
f (n�1)

�
a�1 b

1��
1

��
+

1Z
ln(b1=x)= ln(b1=a1)

(�� 1)�d
�
f
(n�1) �

a�1b
��1
1

��
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I =
��f (n�1)

�
a�1b

��1
1

�����ln(b1=x )= ln(b1=a1)
0

�
ln(b1=x)= ln(b1=a1)Z

0

��(��1)f (n�1)
�
a�1b

��1
1

�
d�

+
(�� 1)� f (n�1)

�
a�1 b

1��
1

�����1
ln(b1=x)= ln(b1=a1)

�
1Z

ln(b1=x)= ln(b1=a1)

� (�� 1)��1 f (n�1)
�
a�1 b

1��
1

�
d�

=
(ln (b1=x ))

� + (ln (x=a1))
�

(ln (b1=a1))
� f (n�1) (x)� �

ln(b1=x)= ln(b1=a1)Z
0

�a1�1f (n�1)
�
a�1b

��1
1

�
d�

��
ln(b1=x)= ln(b1=a1)Z

0

(�� 1)a1�1 f (n�1)
�
a�1b

��1
1

�
d�:

Changing of variables,we have

u = a�1 b
1��
1

� = 0 =) u = b1;

� = 1 =) u = a1;

� =
ln (b1=u)

ln (b1=a1)
;

�� 1 =
ln (a1=u)

ln (b1=a1)
;

and

d� =
du

u ln(a1=b1)
:
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Therefore, we have:

I =

�
(ln(b1=x ))

� + (ln(x=a1))
�

(ln(b1=a1))�

�
f (n�1)(x)

���(�) 1

�(�)

xZ
b1

�
ln(u=b1)

ln(b1=a1)

���1
fn�1(u)

u ln(a1=b1)
du

���(�) 1

�(�)

a1Z
x

�
ln(b1=u)

ln(b1=a1)

���1
fn�1(u)

u ln(a1=b1)
du

=

�
(ln(b1=x ))

� + (ln(x=a1))
�

(ln(b1=a1))�

�
f (n�1)(x)

� �(�+ 1)

(ln(b1=x ))
�

h
J�
b�1
f (n�1)(b1) + J

�
a+1
f (n�1)(a1)

i
: (4.2)

Theorem 24 Let f : I � R! R be an nth di¤erentiable mapping on I� (I� is interior

of I) such that f (n) (x) 2 L[a1,b1] for all x 2[a1,b1]� I , f (n) (x) is GA convex and

bounded with x 2[a1,b1],then the following integral inequalities for fractional integral

holds:

����(ln(b1=x ))� + (ln(x=a1))�(ln(b1=a1))
� f

(n�1) (x)� �(�+ 1)

ln(b1=a1)�

h
J�b1�f

(n�1)
(b1)

�
f
(n�1)

(b1)
�
+ J�a1�f

(n�1)
(a1)

�
f
(n�1)

(a1)
�i����

� b1 ln (a1=b1)
h
(B (a1=b1; �+ 1; 0) + C (a1=b1; 1; �))

���f (n) (a1)���
+(B (a1=b1; �; 1) + C (a1=b1; 0; �+ 1))

���f (n) (b1)���i
where, ��f (n) (a1)�� � L1; ��f (n) (b1)�� � L2; (4.3)

for some numbers L1 and L2;
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where

B (u:m:n) =

ln(b1=x)= ln(b1=a1)Z
0

u��m (�� 1)n d�

C (u:m:n) =

1Z
ln(b1=x)= ln(b1=a1)

u��m (�� 1)n d�:

Proof. Since
��f (n)

�� is GA-convex, we have:
I =

ln(b1=x)= ln(b1=a1)Z
0

��f (n)(a�1 b
1��
1 )d(a�1 b

1��
1 )

+

1Z
ln(b1=x)= ln(b1=a1)

(�� 1)� f (n)(a�1 b1��1 )d(a�1 b
1��
1 )

=

ln(b1=x)= ln(b1=a1)Z
0

��f (n)(a�1 b
1��
1 )b1 (a1=b1)

� (ln a1 � ln b1) d�

+

1Z
ln(b1=x)= ln(b1=a1)

(�� 1)� f (n)(a�1 b1��1 )b1 (a1=b1)
� (ln a1 � ln b1) d�

= b1 ln (a1=b1)

ln(b1=x)= ln(b1=a1)Z
0

(a1=b1)
� ��f (n)(a�1 b

1��
1 )d�

+b1 ln (a1=b1)

1Z
ln(b1=x)= ln(b1=a1)

(a1=b1)
� (�� 1)� f (n)(a�1 b1��1 )d�
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This implies,

jIj � b1 ln (a1=b1)

ln(b1=x)= ln(b1=a1)Z
0

(a1=b1)
� ��

�
�
��f (n) (a1)�� 1 + j�� 1j ��f (n) (b1)��� d�

+b1 ln (a1=b1)

1Z
ln(b1=x)= ln(b1=a1)

(a1=b1)
� j(�� 1)�j��

�
�
��f (n) (a1)�� 1 + j�� 1j ��f (n) (b1)��� d�

= b1 ln (a1=b1)

ln(b1=x)= ln(b1=a1)Z
0

(a1=b1)
� ��+1

��f (n) (a1)��
+b1 ln (a1=b1)

ln(b1=x)= ln(b1=a1)Z
0

(a1=b1)
� �� j�� 1j

��f (n) (b1)�� d�
+b1 ln (a1=b1)

1Z
ln(b1=x)= ln(b1=a1)

(a1=b1)
� � j�� 1j�

��f (n) (a1)�� d�
+b1 ln (a1=b1)

1Z
ln(b1=x)= ln(b1=a1)

(a1=b1)
� j�� 1j�+1

��f (n) (b1)�� d�
Let

B (u;m; n) =

ln(b1=x)= ln(b1=a1)Z
0

u��m j�� 1jn d�

C (u;m; n) =

1Z
ln(b1=x)= ln(b1=a1)

u��m j�� 1jn d�;

then

jIj � b1 ln (a1=b1)B (a1=b1; �+ 1; 0)
��f (n) (a1)��+ b1 ln (a1=b1)B (a1=b1; �; 1) ��f (n) (b1)��

+b1 ln (a1=b1)C (a1=b1; 1; �)
��f (n) (a1)��+ b1 ln (a1=b1)C (a1=b1; 0; �+ 1) ��f (n) (b1)��
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This implies

jIj � b1 ln (a1=b1)
�
B (a1=b1; �+ 1; 0)

��f (n) (a1)��+ C (a1=b1; 1; �) ��f (n) (a1)���
+b1 ln (a1=b1)

�
B (a1=b1; �; 1)

��f (n) (a1)��+ C (a1=b1; 0; �+ 1) ��f (n) (b1)��� :
Using, ��f (n) (a1)�� � L1; and ��f (n) (b1)�� � L2:
we get the required result.

Corollary 25 For � = 1, we get the Ostrowski type inequalities for f
(n)
(x) be a

GA-convex and bounded function.������f (n�1) (x)� 1

ln (b1=a1)

b1Z
a1

f (n�1) (x)

x
dx

������
� b1 ln (a1=b1)

h
(B (a1=b1; 2; 0) + C (a1=b1; 1; 1))

���f (n) (a1)���
+(B (a1=b1; 1; 1) + C (a1=b1; 0; 2))

���f (n) (b1)���i ;
where ���f (n) (a1)��� � L1 and

���f (n) (b1)��� � L2
;for some numbers L1and L2:

Corollary 26 For � = 1 and n = 1, we get the Ostrowski type inequality for

f
0
(x) to be a GA-convex and bounded function:������f (x)� 1

ln (b1=a1)

b1Z
a1

f (x)

x
dx

������ � b1 ln (a1=b1)
h
(B (a1=b1; 2; 0) + C (a1=b1; 1; 1))

���f 0 (a1)���
+(B (a1=b1; 1; 1) + C (a1=b1; 0; 2))

���f 0 (b1)���i : (4.4)
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where ���f 0 (a1)��� � L1 a1nd
���f 0 (b1)��� � L2

for some numbers L1 and L2:

Ostrowski type inequalities is a special domain of the theory of integral inequalities

with a large number of applications. Here, however, applications to spacial means are

discussed.
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4.1 Application to Special Means

Let a1; b1 be two nonnegative numbers with b1 > a1; then

Arithmetic Mean is de�ned as:

A(a1; b1) =
a1 + b1
2

:

Geometric Mean is de�ned as:

G (a1; b1) =
p
a1b1:

Logarithmic Mean is de�ned as:

L (a1; b1) =
b1 � a1

ln b1 � ln a1
:

P-Logrithmic Mean is de�ned as:

Lp (a1; b1) =
bp+11 � ap+11

(p+ 1) (b1 � a1)
; p 2 R= f�1; 0g :

Consider

f (x) = xn+1; x > 0; n > 1:

Then,

b1Z
a1

f (x)

x
dx =

b1Z
a1

xn+1

x
dx =

b1Z
a1

xndx

=
xn+1

n+ 1
jb1a1 =

�
an+11 � bn+11

n+ 1

�
;
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1

ln (b1=a1)

b1Z
a1

f (x) dx =
an+11 � bn+11

(n+ 1) (ln a1 � ln b1)

=
b1 � a1

(ln a1 � ln b1)
an+11 � bn+11

(n+ 1) (b1 � a1)

1

ln (b1=a1)

b1Z
a1

f (x) dx = L (a1; b1)Ln (a1; b1) :

Also

f (x) = xn+1;

f
�p

a1b1

�
= (a1b1)

n+1
2 =

q
an+11 bn+11 :

Thus, from Corollary 26, we have:

��G �an+11 bn+11

�
� Ln (a1; b1)L (a1; b1)

�� � b1 ln (a1=b1)
�
h
(B (a1=b1; 2; 0) + C (a1=b1; 1; 1))

���f 0 (a1)���+ (B (a1=b1; 1; 1) + C (a1=b1; 0; 2)) ��f 0 (b1)��i
� b1

b1�a1L (a1=b1) [(B (a1=b1; 2; 0) + C (a1=b1; 1; 1))L1 + (B (a1=b1; 1; 1) + C (a1=b1; 0; 2))L2]
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Chapter 5

Ostrowski Type Inequalities for

Di¤erentiable Fractional Integral

Using Power Mean Inequality

In this dissertation, we establish a new identity for di¤erentiable, GA-convex

function. Using this identity, we develop Ostrowski type inequalities for fractional

integral. Consequently, we generalize Ostrowski type inequalities for GA-convex �rst

and nth di¤erentiable bounded function for fractional integral. Accordingly, some

applications in subsequent sections are also provided. At the end, Ostrowski type

inequalities using power mean inequality (1.8) are also established. After the estab-

lishment of Ostrowski type inequality we used some fractional integral to prove the

new identity. We use power mean for di¤erentiable fractional integral.



62

Here, we introduce some Ostrowski type inequalities using Power Mean inequality

in the form of some theorems.

5.1 Main Theorem

Theorem 27 Let f : I � R ! R be di¤erentiable mapping on I� where a1; b1 2 I

with a1 < b1 such that f
0 2 L[a1,b1]. If

��f 0��q is GA-convex on [a1,b1]; q >1 and
x 2[a1,b1];then the following inequality for fractional integral holds:���� ln(b1=x )� + ln(x=a1)�ln(b1=a1)�

f (x)� �(�+ 1)

ln (b1=a1)
�

h
J�
b�1
f (b1) + J

�
a+1
f (a1)

i����
� b1 ln

�
b1
a1

�24 ln(b1=x)= ln(b1=a1)Z
0

�
(a1=b1)

� ��d�
�1� 1

q
�
B (a1=b1; �+ 1; 0)

���f 0 (a1)���q
+B (a1=b1; �; 1)

���f 0 (b1)���q� 1
q

+

1Z
ln(b1=x)= ln(b1=a1)

�
(a1=b1)

� (�� 1)� d�
�1� 1

q
�
C (a1=b1; �+ 1; 0)

���f 0 (a1)���q

+C (a1=b1; �; 1)
���f 0 (b1)���q� 1

q

#
:

Proof. Using the power mean integral inequality (1.8) to Theorem (21), we have:

jIj =
����(ln(b1=x ))� + (ln(x=a1))�(ln(b1=a1))�

f (x)� �(�+ 1)

(ln(b1=a1))�
�
J�b1�f (b1) + J

�
a1+
f (a1)

�����
� b1 ln (a1=b1)

ln(b1=x)= ln(b1=a1)Z
0

(a1=b1)
� ��

���f 0 �a�1 b1��1

���� d�
+b1 ln (a1=b1)

1Z
ln(b1=x)= ln(b1=a1)

(a1=b1)
� (�� 1)�

���f 0 �a�1 b1��1

���� d�



63

� b1 ln (a1=b1)

2664
0@ ln(b1=x)= ln(b1=a1)Z

0

(a1=b1)
� ��d�

1A1� 1
q

�

0@ ln(b1=x)= ln(b1=a1)Z
0

(a1=b1)
� ��

���f 0 �a�1 b1��1

����q d�
1A1=q

+

0B@ 1Z
ln(b1=x)= ln(b1=a1)

(a1=b1)
� (�� 1)� d�

1CA
1� 1

q

0B@ 1Z
ln(b1=x)= ln(b1=a1)

(a1=b1)
� (�� 1)�

���f 0 �a�1 b1��1

����q d�
1CA
1=q
3775 :

Using,

f
0 �
a�1 b

1��
1

�
� �f 0 (a1) + (1� �) f

0
(b1)

on the right-hand side of the inequality, we have:

jIj � b1 ln (a1=b1)

2664
0@ ln(b1=x)= ln(b1=a1)Z

0

(a1=b1)
� ��d�

1A1� 1
q

�

0@ ln(b1=x)= ln(b1=a1)Z
0

(a1=b1)
� ��

�
�
���f 0 (a1)���q +(1� �) ���f 0 (b1)���q� d�

1A1=q

+

0B@ 1Z
ln(b1=x)= ln(b1=a1)

(a1=b1)
� (�� 1)� d�

1CA
1� 1

q

�

0B@ 1Z
ln(b1=x)= ln(b1=a1)

(a1=b1)
�
�
�
���f 0 (a1)���q +(1� �) ���f 0 (b1)���q d��

1CA
1=q
3775 :
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Let,

B (u;m; n) =

ln(b1=x)= ln(b1=a1)Z
0

u��m (�� 1)n d�

C (u;m; n) =

1Z
ln(b1=x)= ln(b1=a1)

u��m (�� 1)n d�;

then,we have

jIj � b1 ln(a1=b1)

0@ ln(b1=x)= ln(b1=a1)Z
0

(a1=b1)
� ��d�

1A1� 1
q �
B (a1=b1; �+ 1; 0)

���f 0 (a1)���q
+B (a1=b1; �; 1)

���f 0
(b1)
���q� 1

q

+

0B@ 1Z
ln(b1=x)= ln(b1=a1)

(a1=b1)
� (�� 1)� d�

1CA
1� 1

q �
C (a1=b1; �+ 1; 0)

���f 0 (a1)���q
+C (a1=b1; �; 1)

���f 0 (b1)���q� 1
q

: (5.1)

Corollary 28 For q = 1,we get the inequality (3.5) of Theorem 20.

Theorem 29 Let f : I � R ! R be on nth di¤erentiable mapping on I� where

a1; b1 2 I with a1 < b1 such that f (n) (x) 2 L[a1,b1]. If
���f (n) (x)���q is GA-convex on

(a1; b1) ; q > 1 for all x 2 [a1,b1]; then the following inequality for fractional integral

holds:

Just replace
��f 0 (a1)��q and ��f 0 (b1)��q with ��f (n) (a1)

��q and ��f (n) (b1)��q in the right-hand
side of theorem 3 above and f (x) with f

(n+1)
(x) on the left-hand side of theorem 3,
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we have:

jIj =
���� ln(b1=x )� + ln(x=a1)�ln(b1=a1)�

f
(n�1)

(x)� �(�+ 1)

ln (b1=a1)
�

h
J�
b�1
f (n�1) (b1) + J

�
a+1
f (n�1) (a1)

i����
� b1 ln (a1=b1)

0BB@
0@ ln(b1=x)= ln(b1=a1)Z

0

(a1=b1)
� ��d�

1A1� 1
q

�
�
B (a1=b1; �+ 1; 0)

��f (n) (a1)��q +B (a1=b1; �; 1) ��f (n) (b1)��q� 1
q

+

0B@ 1Z
ln(b1=x)= ln(b1=a1)

(a1=b1)
� (�� 1)� d�

1CA
1� 1

q

�
�
C (a1=b1; �+ 1; 0)

��f (n) (a1)
��q + C (a1=b1; �; 1) ��f (n) (b1)

��q� 1
q

�
: (5.2)

Corollary 30 For q = 1; n = 1; we get inequality (3.7) of Theorem 21 .
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Chapter 6

Conclusions and Recommendations

In this thesis, Ostrowski type inequalities for fractional integral have been studied

for nth di¤erentiable GA-convex functions.

6.1 Concluding Remarks

In this thesis, �rst of all various types of convex functions and fractional inte-

grals, their applications and various related identities and well-known inequalities are

discussed. Then a new identity for di¤erentiable, GA-convex function is established.

Using this identity, Ostrowski type inequalities for fractional integral are developed.

Then, two versions of Ostrowski type inequality for GA-convex di¤erentiable and

bounded function for Hadamard fractional integral are developed. Consequently,

Ostrowski type inequalities for GA-convex nth di¤erentiable bounded function for

Hadamard fractional integral version-I and version-II are generalized. Accordingly,
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some applications to special means, such as arithmetic-, geometric-, logarithmic- and

p-logarithmic means in subsequent sections are also provided. Further, Ostrowski type

inequalities for �rst time di¤erentiable and n-time di¤erentiable GA-convex function

via fractional integral are established using power mean inequality. At the end, some

conclusions and recommendations for further research work are provided.

6.2 Recommendations for Future Work

Future recommendation for Development of Ostrowski type Inequality shuold be

made due to complexity of fractional integral. These osrtowski type inequalities

may be enhanced for some other complicated fractional integrals given in the liter-

ature. These inequalities may be generalized on di¤erentiable mapping for various

convex functions. Some variants of ostrowskis type inequalities may be established

using fractional integrals alongs with other suitable technique that helps improving

error estimates. Otrowski type inequalities may be appropriately modi�ed to extend

their scope by investigating classes. For example, Ostrowski type inequality for func-

tions de�ned on non-Euclidean spaceses, or function with certain properties such as

monotonicty, di¤erentaibilty, or convexcity.
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