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ABSTRECT 
 

Title: Influence of Thermally Radiative Stagnation point flow of Casson Nanofluid with 

Magnetic Field 

The primary goal of this thesis is to investigate the influence of thermally radiative stagnation 

point flow of Casson nanofluid with magnetic field. A mathematical model design for physical 

flow of fluid is in the form of partial differential equation and it converts partial differential 

equations (PDEs) into ordinary differential equation (ODEs) by using suitable transformations 

and employing shooting method to obtain the possible numerical results. For computational 

work, MATLAB has been used. The graphs show how various parameters affect the non-

dimensional velocity, temperature and concentration profiles. Tables also display and examine 

the numerical values of the Heat generation coefficient, Thermal Grashoff number, 

Concentration number, Schmidt number, Prandtl number, Eckert number, Nusselt number and 

Sherwood number. 
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CHAPTER 1  

INTRODUCTION 

A substance that continuously deforms after applying shear stress or an external force 

on it is called Fluid. Fluid can be found as liquids, gases, or plasma (Cengel et al. 2013). It is a 

material that has a vanishing shear modulus, or to put it another way, it is a material that cannot 

withstand any applied shear stress. Since fluid is a need for daily life and plays a crucial role in 

many natural processes, scientists from around the globe are striving to delve into a variety of 

fluid flow-related facts. In the subfield of fluid dynamics known as fluid dynamics, we 

investigate fluid flow while simultaneously examining its underlying causes and how the fluid 

flow is influenced by forces. It offers ways to comprehend how the blood circulates as well as 

how the stars, seas, currents, and tectonic plates have evolved (B. Xia, et al., 2002). Fluid fluxes 

are used in a variety of applications, including wind turbines, oil pipelines, rocket engines and 

air conditioning systems (R. Banerjee, et al., 2002). Newtonian flow properties are exhibited by 

most low molecular weight materials, such as organic and inorganic liquids, low molecular 

weight inorganic salt solutions, molten metals, molten salts, and gases, at constant temperature 

and pressure. The dynamic viscosity, which is the constant of proportionality, is the measure of 

a fluid's resistance to shear stress at constant temperature and pressure and is proportional to the 

rate of shear. This type of fluid is known as Newtonian fluid (R. P. Chhabra, 2010). Non-

Newtonian fluids act like solids and stay semi-solid or excessively viscous. Newton's viscosity 

law does not apply to this type of fluid. (Huilgol, 1968) made some remarkable research on 

second order fluid. (K. R. Rajagopal, 1984) explored the exact result for a Non-Newtonian fluid 

flowing over an infinite porous plate. The investigation of MHD Casson fluid flow through a 

vertical porous plate under the impact of heat diffusion and chemical reaction was contributed 

by (Kodi & Raghunath et al., 2022). In a article by  (Afify, 2004), the author discussed various 

phenomena that occur in the flow of a viscous, electrically conducting fluid in the presence of 

a magnetic field. These phenomena include the magnetic effect, chemical reactions, convection, 

and the behavior of the fluid when it is subjected to a stretching surface and is incompressible. 
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1.1 Casson fluid 

The Casson fluid, first described by (Casson, 1959), is a type of fluid that exhibits shear 

thinning behavior. Examples of materials that exhibit this behavior include jelly, honey, soup, 

and concentrated fruit juices. Both at extremely high and extremely low shear rates, the Casson 

model is more realistic. Both biomechanics and the manufacturing of polymers benefit greatly 

from its use. The Casson fluid constitutive equation has been shown to fit adequately in silicon 

suspensions, water-soluble bentonite suspensions and lithographic varnishes. It explains the 

nonlinear connection between stress and strain rate and has been shown to be very beneficial 

for printing inks. Some researchers have done extraordinary work on Casson fluid. In recent 

years, there have been several studies on the behavior of Casson fluids in various settings.  (K. 

Anantha Kumar, 2020) investigated the impact of heat radiation on the flow of an MHD Casson 

fluid across an exponentially increasing curved sheet.  (M. Hamid, 2019) studied heat transfer 

in a partially heated trapezoidal cavity using a Casson fluid. (Thumma, 2020) used a simplified 

differential quadrature method to study the behavior of an unstable 3D MHD radiating 

dissipative Casson fluid that is carrying small particles. 

 

1.2 Magnetohydrodynamics (MHD) 

Magnetohydrodynamics (MHD) is the analysis of fluid motion in the presence of a 

magnetic field. It is particularly concerned with the movement of electrically conductive fluids 

such as plasmas, liquid metals, and salt water or electrolytes in magnetic fields. MHD was first 

defined by Maxwell in terms of charge density, sources, and current density. Set of Maxwell 

equations define as: 

𝛻. 𝐸 =
𝜌𝜈

𝜖0
   (Gauss' s Law of Electricity) 

∇. 𝐵 = 0   (Gauss's Law of Magnetism) 

∇ × 𝐸 = −
𝜕𝐵

𝜕𝑡
   (Faraday's Law) 

∇ × 𝐵 = 𝜇0 𝐽 + 𝜇0𝜖0
𝜕𝐸

𝜕𝑡
 (Ampere's Law) 

The applications of MHD are wide-ranging and include fields such as geophysics, 

astrophysics, and engineering. In recent years, there have been several studies on MHD flows 
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of various types of fluids in different settings. For example,  (S. K. Asha & G. Sunitha, 2019) 

discussed research on MHD peristaltic blood circulation of Powell Eyring nanofluid through an 

uneven conduit.  (JU Abubakar & AD Adeoye, 2020) studied MHD permeable tapered stenosed 

artery subject to radiation effect.  (AS Idowu & BO Falodun, 2020) investigated Soret–Dufour, 

thermophoresis, heat and mass transmission of Casson nanofluid over an inclined plate. (L. 

Khan, M. Raza, N. Mir, & R. Ellahi, 2019) studied MHD nanofluid peristaltic flow in an 

asymmetric channel with various nanoparticle morphologies. (Y. El-Masry, 2019) used 

iteration approaches on the flow of Powell Eyring fluid to solve the MHD variation on free 

convective heat transfer analysis over the wavy channel. This research has demonstrated that 

the magnetic field effect provides an opposing force that reduces the frictional force of MHD 

conducting fluid. (Afridi, 2018)  reported entropy production reduction in frictional and Joule 

heating induced MHD boundary layer flow across a stretched, smearing sheet. 

1.3 Stagnation points 

A stagnation point is a point in a fluid flow where the local velocity of the fluid is zero. 

These points can occur on the surfaces of objects in the flow field, where the fluid comes to rest 

due to the presence of the object. Recently, there have been several studies on the behavior of 

different types of fluids in the vicinity of stagnation points. For example, (Khan, M. Riaz, Kejia 

Pan, Arif Ullah Khan, & S. Nadeem, 2020) analyzed dual solutions for SiO2-Al2O3/water 

hybrid nanofluid mixed convection flow approaching the stagnation point across a curved 

surface. (Ijaz Khan, 2020) conducted numerical simulations to investigate the impact of binary 

chemical reactions and activation energy on the nonlinear thermal radiative stagnation point 

flow of Walters’-B nanofluid.  (Warke, 2022) made a numerical investigation of the stagnation 

point flow of radiative magneto micropolar liquid past a heated porous stretching sheet. 

(Mustafa, 2012) studied the movement of a Casson fluid in the region of a stagnation point in 

the direction of a stretched sheet. 
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1.4 Nanofluid 

Nanofluid is a mixture of conventional low thermal conductivity fluid and nanoparticles 

with a size smaller than 100 nm. (Choi, 1998) introduced the term "nanofluid," which defined 

a new kind of fluid. Nanofluids are suspensions of microscopic particles (nano size) in a base 

fluid. Carbon nanotubes, carbides, metals and oxides are the most often employed nanoparticles 

in nanofluids. These fluids are created to have higher thermal conductivity than other basic 

fluids. The use of nanoparticles of gold, copper, silver and other metals inside base fluid will 

increase thermal conductivity of nanofluid. (Buongiorno J. , 2006) investigated the mechanism 

underlying the rise in the thermal conductivity of nanofluids. He observed that the fluid's 

thermal conductivity changes because of the Brownian motion and the thermophoresis effect. 

In the information technology and heavy vehicle industries, nanofluid can also be utilized as a 

coolant. Overall, nanofluid is a boon in a variety of industrial, biomedical, and technical 

domains. 

1.5 Porous Medium 

When a solid or group of solids has enough free space within or around them for a fluid 

to travel through or around them, the solid is said to have a porous medium. A porous media 

can be conceptually described in a variety of ways. One idea is a solid that is continuous yet has 

holes in it. Consolidated refers to such a medium, and the pores may be impermeable or 

permeable (Shamey, 2014). Porous medium has one of the main property, porosity 𝜀.  

𝜀 =
𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒−𝑠𝑜𝑙𝑖𝑑 𝑣𝑜𝑙𝑢𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒
. 

In recent studies, researchers have investigated the behavior of Casson fluids in various 

settings, utilizing magnetohydrodynamics (MHD) to analyze the flow. For example, (G. 

Mahanta a. S., 2015) investigated a 3D Casson fluid flow across a porous, linearly extending 

sheet using MHD, adding a convective boundary condition at the surface where the fluid's 

thermal conductivity varies linearly with temperature. (Khalid, 2015) also examined the 

unsteady MHD free flow of a Casson fluid across an oscillating vertical plate with constant wall 

temperature, considering that the fluid was moving through a porous medium. (Ullah, 2017) 

studied the impact of the slip condition on the non-Newtonian fluid's free convective flow across 
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a nonlinearly stretched sheet filled with porous medium with Newtonian heating. (Swain, 2018) 

investigated Williamson nanofluid flows across porous media in an MHD boundary layer under 

convective boundary conditions. 

1.6 Thesis Contributions 

In this thesis, a detailed review of work by (S. M. Ibrahim, 2020) has been included. 

Some important parameters, heat and mass transfer of a radiative MHD Casson fluid across an 

exponentially permeable stretching sheet with nonlinear chemical reaction and other effects 

such as nonlinear mixed convection, magnetic, suction/ injection and stagnation point are 

discussed. In this, we converted PDEs into ODEs by using suitable transformations and 

employed shooting method to obtain the possible numerical results. For computational work we 

used MATLAB. Obtained results will be displayed graphically as well as in tabular form.  

1.7 Thesis Organization 

This thesis is further divided into the following chapters, which are as follows: 

Chapter 2 comprises the related literature review. 

Chapter 3 covers fundamental description, rules and ideas which are important in 

realizing forthcoming work. On the concluding page of this chapter, the mathematical model 

and shooting method are also mentioned. 

Chapter 4 provides a review work of (S. M. Ibrahim, 2020).  

Chapter 5 is the extended work of (S. M. Ibrahim, 2020). In this, we converted PDEs 

into ODEs by using suitable transformations and have used shooting method. 

Chapter 6 contains the conclusions drawn in chapter 5. 

In the end, the Reference list contains all the references utilized in this research. 



 

 

CHAPTER 2  

LITERATURE REVIEW 

Fluid mechanics is a topic that has grown rapidly in the engineering world, and this is 

reflected in the use of cooling systems and lubricants in machinery. The first mathematical 

model representing the fluid motion resulting from Newton's second law for viscous fluid 

substances was developed by Navier and Stokes (Pletcher, Tannehill, & Anderson, 2012). Then, 

Prandtl particularly simplified the nonlinear term on the Navier-Stokes equation system for the 

boundary layer problem (Prandtl, 1904). Several more variables that affected the flow 

characteristics were then taken into consideration when these theoretical investigations were 

being developed. 

Casson fluid, due to its unique rheological properties, is a widely utilized non-

Newtonian fluid (S. Nadeem, 2014). Researchers have studied its behavior in various scenarios, 

such as the Casson fluid flow in three dimensions past a porous linearly stretching sheet in the 

presence of a convective boundary condition  (G. Mahanta S. S., 2015) and the heat transfer 

and Casson fluid flow forward through an exponentially highly permeable stretching surface 

(S. Pramanik, 2014). Many industries make use of the suction and injection processes, such as 

in the design of thrust bearings, radial diffusers, and thermal oil recovery. Studies presented by 

(W.M.Rohsenow, 1998) and (Pantokratoras, 1991) have investigated on the impact of suction 

or injection on boundary layer flow and heat transfer and the effect of radiation on the 

stagnation-point flow of a micropolar fluid across a nonlinearly expanding surface with 

suction/injection effects was presented by (Jayachandra Babum, 2015). The behavior of a non-

compressible micropolar fluid across a sheet stretched in its own plane has also been examined 

by (R. Nazar, N. Amin, D. Filip, & I. Pop, 2004). The influence of a magnetic field on the 

unstable natural convection flow of a micropolar fluid sandwiched between two vertical walls 

was presented by (H. Kataria & H. Patel, 1996). 
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(A. Mishra & M. Kumar, 2020) investigated the impact of thermal radiation, viscous-

Joule heating and heat generation over an implanted stretching layer with MHD nanofluid flow 

caused by suction/blowing in the permeable material. (Vinita, Poply, Goyal, & Sharma, 2020) 

investigated the effect of magnetohydrodynamic slip flow with radiation influence on a 

nonlinear extending channel in the presence of external velocity. (Vaidyaa, et al., 2020) studied 

the flow of fluid with different properties (thickness and thermal conductivity) through the 

permeable medium. (Yazdi, Moradi, & Dinarvand, 2014) demonstrated the 2D mixed 

convection MHD boundary layer stagnation point flow in the presence of heat radiation using 

a vertical plate loaded with nanofluid. Kumar (K. A. Kumar, 2019) used a nonlinear surface to 

investigate the impact of heat transport in MHD Casson nanofluid. (F. Aman, 2013) examined 

the flow of a 2D incompressible viscous fluid in the presence of an external magnetic field using 

a decreasing surface. (U. Khan, 2018) conducted a study on the impact of a magnetic field on 

heat transfer in the flow of nanofluids between two parallel plates. The research aimed to 

understand how the magnetic field influences the thermal characteristics of the nanofluid flow 

and how it affects the heat transfer process. He discovered that the form factor has no effect on 

fluid velocity. It was also determined that nanoparticles with a larger form factor will raise the 

temperature while decreasing heat transfer. Using Lie group analysis, the heat and mass 

transport characteristics of an inviscid Newtonian fluid with temperature-dependent viscosity 

and constant thermal over a vertical stretching / shrinking sheet with changing flow conditions 

were investigated by (Sivagnana Prabhu KK, 2009). 

Thermophoresis refers to the movement of tiny particles suspended in a fluid or gas due 

to temperature differences. The particles will tend to move towards the area of lower 

temperature. This phenomenon can be observed in various systems such as lighting fixtures, 

where carbon particles produced by combustion will be drawn towards the cooler glass globe 

and deposit there, as explained by (L. Talbot, 1980). Thermophoresis has a wide range of 

applications in various fields, including lighting systems, air conditioning systems, 

biotechnology, combustion and propulsion and materials science. In lighting systems, the 

blackening of the glass globe is caused by the thermophoresis of carbon particles emitted during 

combustion being drawn towards the cooler area of the globe. In air conditioning systems, 

thermophoresis can be used to filter out particles and microorganisms. In biotechnology, it can 

be used to manipulate cells and particles in microfluidic devices. In combustion and propulsion, 
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thermophoresis can be used to control the dispersion of fuel droplets and prevent soot formation. 

In materials science, it can be used to manipulate and sort particles based on their size and 

charge. The ability to control the movement of particles through temperature gradients makes 

thermophoresis a versatile tool with potential applications in a wide range of fields. (Sandeep, 

2016) explored the diffusion system for the Casson fluid flow based on an abrupt pressure 

gradient at a stagnation point, as well as the loss of heat energy at the lowest thermodynamic 

temperature. The space-dependent heat is modified so that the internal thermal source of energy 

can meet temperatures both near and far from the surface. 

In recent years, researchers have been studying the behavior of magnetohydrodynamic 

(MHD) fluids at stagnation points, particularly in the presence of porous materials and heat 

sources. For example, (Jena, 2017) examined the flow of an MHD fluid at a stagnation point 

through a porous material with a heat source. (Bhattacharyya, 2012) analyzed the heat transfer 

and flow at a stagnation point across a sheet that decreases exponentially and found that the 

range of velocity ratios where a similarity solution exists is wider than when the sheet decreases 

linearly. Additionally, the study found that dual solutions can exist even when the shrinking 

rate is less than the straining rate, and that heat addition or absorption may be possible under 

certain conditions. (Zainal, 2020) used MHD and mixed convection stagnation point flow to 

examine the movement of a hybrid nanofluid across a perpendicular flat plate with a convective 

boundary condition. 

Thermal stratification is a phenomenon caused by the structure of layers or strata in a 

fluid flow regime. According to heat transfer analysis, the impact of boundary layer fluxes and 

temperature stratification is significant. Temperature stratification can occur because of 

temperature changes or the combination of differing densities of fluids. There are various 

practical uses of thermal stratification, such as in thermal energy storage systems (such as solar 

ponds), atmospheric density stratification, and the manufacturing of sheeting materials. Due to 

these uses, many researchers and scientists have found that the boundary layer movement of 

Newtonian fluids is not as well-suited as the flow of non-Newtonian fluids. The flow variability 

of non-Newtonian fluids in nature makes it difficult to achieve a complete physical description 

using a single relationship between shear rate and stress. As a result, there are several models 
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available in the literature to describe the unique rheological properties of non-Newtonian fluids. 

(Powell, 1944) proposed a unique fluid model known as the Powell-Eyring fluid model. This 

model has some advantages over non-Newtonian models as it is developed from atomic theory 

of gases rather than experimental relationships and it converts to a Newtonian mode at low and 

high shear rates. Even though the mathematics of the model is more complex, the benefits of 

this fluid model outweigh the complexity. The Eyring-Powell model can be used to describe 

the flows of modern industrial products such as ethylene glycol and powdered graphite. 

Different geophysical, natural and industrial issues, such as moisture and temperature 

distribution over agricultural pitches, environmental contamination, subsurface energy transit, 

etc., are greatly influenced by heat diffusion through the Eyring-Powell fluid. (Yoon, 1987) 

wrote a remark on Eyring-Powell fluid flow and determined that for zero shear rate viscosity, 

Eyring-Powell is truly sensitive to slight fluctuations and moderately responsive for infinite 

shear rate viscosity. 

(F. Shahzad, 2019) studied flow of nanofluid through horizontal sheet in the presence 

of an external magnetic field utilizing Joule heating effect. (Naramgari, 2016) analyzed a 

stretched surface's impact on MHD nanofluid caused by heat radiation. (Abolbashari, 2015) 

investigated the use of slip velocity and surface boundary conditions to transfer heat and energy 

in a constant laminar Casson nanofluid flow. (S. S. Ghadikolaei, 2018) examined the MHD 

flow of a Casson nanofluid over a porous non-linear sheet and evaluated several physical 

characteristics such as chemical reactions, thermal radiation, suction, Joule heating, heat 

generation and absorption. The unstable nanofluid flows in presence of heat radiation were 

investigated using a stretching surface by (Das, 2014). (Ibrahim, 2013) studied the boundary 

layer flow of a non-Newtonian nanofluid utilizing the slip boundary condition, thermal radiation 

and magnetic field effect. (M. R. Krishnamurthy, 2016) explored the numerical analysis of 

Williamson nanofluid flow through a permeable surface, as well as the influence of chemical 

parameters in the presence of nanoparticles.  

(Abbas, 2020) observed a sliding plate with various slip coefficients is impinged upon 

by a 3D axisymmetric stagnation flow of a hybrid nanofluid in two orthogonal directions. The 

impacts of a non-uniform heat source/sink as well as viscous dissipation were investigated. The 
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flow change from the classical Hiemenz (1911) and Homann (1936) solutions for the 2D and 

axisymmetric stagnation-point boundary layers to the local Brinkman equation (1947) solution 

in the stagnation zone of a cylinder or sphere was examined by (Q. Wu, 2005) When increasing 

concentrations of fibers are introduced equally to the medium surrounding these blunt 

structures, the viscous resistance of the fibers dissipates the fluid's inertia. In a study conducted 

by(Layek GC, 2007), the authors measured mass and energy transfer for an incompressible 

viscous fluid's boundary layer stagnation point flow towards a heated porous stretching sheet 

embedded in a porous medium. The fluid flow was subject to suction and blowing with internal 

heat generation or absorption. 

The simultaneous occurrence of heat and mass transfer in a fluid requires a thorough 

understanding of the interplay between fluxes and driving potentials in both theoretical and 

experimental studies. Researchers have discovered that energy fluxes can be generated not only 

by temperature gradients but also by concentration gradients. This led (Alam MS, 2006) to 

investigate the effects of Dufour and Soret on the unsteady flow of MHD, free convection and 

mass transfer through a vertical porous plate in a porous medium, with a particular focus on 

fluids with low and medium molecular weight. The Darcy's flow model depicts a linear 

relationship between flow rate and pressure drop in a porous medium, any deviation from this 

is referred to as non-Darcy flow. 

The ability to control heat exchange and fluid flow near various types of obstacles using 

magnetic fields has stimulated increased interest in studying boundary layer flows under the 

influence of an external magnetic field. However, it is also important to consider the effect of 

ohmic heating in order to fully understand the impact of the magnetic field on thermal transport 

in the boundary layer. Research has been conducted on the impact of ohmic heating on the 

MHD free convective heat transfer of Newtonian fluids, the influence of ohmic heating on 

mixed convection boundary layer flow of a micropolar fluid from a rotating cone with a power 

law change in surface temperature, and the effect of ohmic heating on combined heat and mass 

transfer in MHD 3D flow over a stretched surface for a viscous incompressible fluid with 

temperature-dependent viscosity and thermal conductivity. 
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Many industrial processes are carried out at extreme temperatures, making radiation heat 

transfer an important consideration in the design of associated equipment. Nuclear power plants, 

gas turbines, and various propulsion technologies used in aircraft, missiles, satellites, and space 

vehicles are all examples of this. Many industrial processes involving flow and mass transfer 

over a flat surface, such as the manufacture of polymers, ceramics, or glassware, may entail 

chemical reactions that result in the formation or absorption of diffusing species. This can have 

a substantial impact on the flow and, as a result, the quality and attributes of the finished 

product. The order of a chemical reaction determines whether it is heterogeneous or 

homogeneous. A reaction is of nth order if its rate is proportionate to the nth power of 

concentration. (Das, U. N, Deka, R. K, & Soundalgekar, V. M , 1994) conducted a study on the 

effect of a homogeneous first-order chemical reaction on the flow through an infinite vertical 

plate with impulsively begun uniform heat flux and mass transfer. They considered the heat 

generated during the dissipation process, which is an essential factor in the design of many 

devices. Viscous dissipation, which is the ability of a velocity to do work against viscous forces, 

and Joule heating, which occurs when an electric current passes through a conductor, are both 

critical in the operation of various devices that operate at high deceleration or high rotating 

speeds. (O.A. Plumb, 1981) was the first to investigate the influence of horizontal crossflow 

and radioactivity on natural convection from a vertically hot wall in a saturated porous medium. 

Additionally, several attempts have been made to analyze the effect of a transverse magnetic 

field on boundary layer flow behavior with specific industrial applications in mind, such as 

polymer processing technology. 

The study of hydromagnetic flows with mass and temperature transfer in porous media 

has gained increasing attention in recent years due to their relevance in various technical fields 

such as boundary layer flow, magnetic levitation, casting, filtration of liquid metals, temperature 

control of nuclear reactors, fusion control, and measures to prevent scaling in heat exchangers. 

Additionally, research on irregular hydromagnetic flows is important from a practical 

standpoint as fluid transients can occur during the startup of many industrial processes and 

devices such as MHD power sources, MHD hydraulic systems, MHD accelerators, MHD flow 

meters, and controlled thermonuclear power plants. ( M. A. Hossain & A. C. Mandal, 1985) 

investigated the flow of an unstable magnetohydrodynamic natural convection thermal and 

mass transfer fluid along a flat plate in a fluid-saturated porous material. Many fluid flow 
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problems of physical importance involve a large temperature difference between the ambient 

fluid and the surface of the solid, such as chemical reactions in fluids that are exothermic or 

endothermic, heat evacuation from nuclear fuel debris, buried disposal of radioactive waste, 

food storage, and dissociating fluids in fixed bed reactors. Therefore, it is important to take into 

consideration temperature-dependent heat sources and sinks, which can have a significant 

impact on heat transfer characteristics. 

Natural convection is a method of heat transfer that occurs because of density variations 

in a fluid caused by temperature differences. The fluid movement caused by these density 

variations, known as buoyancy forces, causes warmer fluid to rise and cooler fluid to sink, 

creating a circulating flow pattern known as a natural convection loop. The rate of natural 

convection can be affected by factors such as the properties of the fluid, the geometry of the 

system, and the temperature difference between the fluid and its surrounding surfaces. This 

phenomenon can occur in both liquids and gases and is commonly found in various industrial 

and natural settings such as electronic device cooling, heat exchangers, and air movement in a 

room. (R. Muthucumarswamy, 2000) conducted a study on the transient free convection flow 

of an incompressible thick fluid over a vertical surface that is impulsively started and 

considering a first-order homogeneous chemical reaction. MHD flows across a porous material 

in the existence of a chemical process is another typical pattern in the chemical sector. When a 

liquid that conducts electricity flows through a porous medium under magnetohydrodynamic 

conditions, the pressure drop and the amount of liquid retained in the medium, such as a packed 

pebble bed in a blanket for fission-fusion hybrid reactors, will be higher than when non-

conducting fluids are used, in order to maintain a constant flow rate. Another usage for external 

magnetic fields is in the formation of crystals, where it has been effectively used to eliminate 

non uniform composition and inhibit unstable flow while also improving the quality of the 

crystal. (K. D. Singh, 2010) examined how chemical reactions affect the unsteady flow of heat 

and mass transfer through a surface that is embedded in a porous medium and fully immersed 

in a permeable material, with heat production or absorption, under magnetohydrodynamic 

conditions. Similarly, (Makinde, 2010) investigated how an nth-order homogeneous chemical 

interaction between the fluid and the diffusing species affects the MHD mixed convection flow 

of an optically thin radiated fluid through a vertical porous plate that is submerged in a 

permeable material. 



13 
 

 

Homogeneous or heterogeneous processes can be used to model chemical reactions. A 

homogeneous reaction occurs uniformly throughout a phase, while a heterogeneous reaction is 

limited to a specific area or within the boundaries of a phase. (Soundalgekar, 1977) studied the 

movement of a viscous fluid through an infinite vertical plate with an infinite heat flux and an 

impulsively initiated chemical reaction. The Laplace transform method was used to obtain the 

solution and the effects of cooling or heating the plate on the flow field were analyzed using the 

Grashof number. One of the remarkable effects to be introduced is joule heating, which allows 

excellent control over the direction of magnetohydrodynamic fluid motion. Joule heating, also 

known as Ohmic heating, is the process of converting electrical into thermal energy, which 

generates heat through reactance in the medium. The Joule heating effect is also widely and 

effectively used in many electrical, digital and electronic devices. The most beneficial 

application of Joule heating is carrying an electric potency to manage losses in terms of 

minimizing current. Several studies have been conducted to study the flow of different types of 

magnetohydrodynamic fluids and the impact of Joule heating on them. (Chakraborty, 2013) 

looked into the impact of variable viscosity and Joule heating on the stream of an 

electromagnetohydrodynamic fluid connected to a continuous heat flux. 

Bioconvection of nanofluids is an intriguing field of research with a wide range of 

applications, including microfluidic devices, pharmaceutical production, gas bearings, sediment 

transport, modeling, fuel and lubricant development, enhanced oil recovery, hydrodynamic 

systems, and polymer fabrication. This phenomenon occurs due to the spontaneous upward 

swimming motion of microorganisms that are denser than water. Bioconvection is a method 

that produces non stability by causing tiny density motile bacteria to float near the surface of a 

liquid. Gyrotactic microorganisms, such as algae, tend to congregate on the surface of a liquid 

due to their tendency to swim towards the top. This can lead to a thicker surface layer and an 

unstable surface. Depending on the specific conditions, these microorganisms can be further 

classified as gyrotactic, oxytactic, or chemotactic. The movement of nanomaterials is driven by 

Brownian motion or thermophoresis. Understanding the behavior of these motile 

microorganisms in the context of nanofluids is particularly fascinating, as it has implications 

for a variety of fields, including microbiology and health. The accumulation of microorganisms 

in a liquid can result in the formation of a thick layer of bacteria on the surface of the liquid. 

Because of their low density relative to water, these microorganisms tend to congregate at the 
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top of the liquid. Bioconvection is a term used to describe the natural movement of swimming 

microorganisms in a liquid. This phenomenon is like Rayleigh-Benard convection, but it is 

driven by the absorption and swimming of microorganisms. Biochemical nano-liquids are 

liquids, which can be either water-based or non-water-based, that contain gyrotactic motile 

bacteria and metal-derived nanoparticles. Different researchers have investigated different 

aspects of the bioconvection phenomenon. For instance, (Platt, 1961) first introduced the term 

"bioconvection" to describe the process of development in the movement of swimming motile 

microorganisms. This phenomenon is analogous to Rayleigh-Benard convection, but it is 

caused by the absorption and swimming of microorganisms. (Kuznetsov, 2011) studied the 

concept of isothermal convection using two different types of motile bacteria, gyrotactic and 

oxytactic. (Abdelmalek, 2021) examined the bioconvection of nanoparticles in the flow of 

micropolar fluids over a stretched surface. 

Activation energy refers to the minimum amount of energy required for a substance to 

undergo a chemical reaction or change. The concept of activation energy was first introduced 

by Svante Arrhenius in 1889. It can be thought of as the amount of energy needed to overcome 

the potential barriers or obstacles that exist between the initial reactants and the final products. 

Activation energy plays an important role in a variety of fields such as industrial engineering, 

oil storage and production, geothermal energy, fluid mechanics, oil emulsification, and food 

production. In a study conducted by (Bestman, 1990), the boundary layer flow of heat and mass 

transfer on the surface of a dividing boundary was analyzed using a mathematical model based 

on the Arrhenius activation energy concept for a two-component reacting system. The study 

specifically focused on how the boundary layer flow affected heat and mass transfer on the 

surface of the boundary divider and how the Arrhenius activation energy concept could be used 

to better understand these processes. In this investigation, he used an irritant technique to give 

an empirical approach to the topic. (Elayarani, 2021) investigated the alteration in mass and 

thermal properties of a Carreau base fluid containing microorganisms across a slandering 

surface.  

Micropolar nano fluids are a type of non-Newtonian fluid that exhibit particular 

microscopic and nano phenomena. These effects model the structure of micromotions as well 
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as the Brownian movements of fluid particles. Micropolar nanofluids are being developed to 

study the behavior of many industrial and biological products. (Ahmadi, 1976), studied the self-

similar solution of micropolar fluid on a semi-infinite plate. Nanofluids have many practical 

applications such as in medicine, hybrid engines, fuel cells, microelectronics and more recently 

in the field of nanotechnology due to their unique properties which make them suitable for a 

wide range of applications. The (Buongiorno J. , 2006) method for nanofluids more realistically 

measures the spread of nanoparticles across the fluid flow. Researchers have extensively used 

this model to explore the heat conduction enhancement of ordinary fluids. Nanofluid research 

has grown dramatically in the last two decades, particularly in the creation of highly effective 

coolants and improved heat transfer technologies.  

In a study conducted by (Watanabe, 1990), the flow of a non-similar boundary layer on 

a trough with constant suction or injection was investigated. The difference-differential method 

was utilized to derive the standard boundary layer equations and transform them into 

dimensionless stream function equations. These equations were then transformed into integral 

equations with the boundary conditions. The numerical solutions were obtained through 

iterative numerical quadrature, and the results for velocity and temperature distributions, as well 

as the coefficients of skin friction and heat transfer, were presented for a variety of pressure 

gradient and suction/injection parameter values. The study found that it is possible to 

significantly alter flow field and rate of heat transmission from the surface by the process of 

suction or injection, like mass transfer cooling. (Erickson, 1966) pioneered suction or injection 

through a stretching sheet. It was introduced a porous medium compressor with an 

interconnected heat exchanger. Unlike a catalytic combustor, this burner uses flames to burn 

inside a porous medium. Combustion in porous media has been shown to be a promising 

approach for developing burners with high power densities, wide power dynamic ranges, and 

minimal emissions, as studied by (TRIMIS, 1996). The paper describes the test rig and operating 

principle of the combustor and provides results and specifications for the burner. Additionally, 

the paper discusses the mechanisms of heat transfer and the possible fields of application for 

this technology. 
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A heat exchanger's operation, the melting of ice on an airport runway using resistance 

heating, the heating of a frying pan on an electric range, the use of an absorber plate to dissipate 

heat from an electronic bundle, the heating of an item on a hot plate, the operation of a heat 

exchanger and many other industrial activities that involve heating or cooling all involve the 

transfer of heat by conduction. High thermal conductivity materials (such as a heat sink 

material) are required for effective heat transfer by conduction. Good thermal contact must also 

exist between the two interfaces (such as a heat sink's surface and a printed circuit board's 

surface) through which heat transfer takes place. A good thermal contact necessitates the use of 

a thermal interface substance, such as a thermal grease, that is thin (tiny in thickness) between 

the contact surface, conforms to the topographical of the mating surface, and preferably has a 

high thermal conductivity. In a study conducted by (Raju, 2016) , the use of the finite element 

method was explored to simulate unsteady MHD free convection flows past a vertically inclined 

porous plate, considering thermal diffusion and diffusion thermally effects. The study focused 

on the importance of viscous dissipation temperature difference in the free convective flow of 

fluids when the flow field is low in temperature, extreme in size, or has a high gravitational 

field. This is important in many fields, such as in polymer processing flows where significant 

temperature rises are observed, as well as in the conversion of certain types of mechanical, 

nuclear, electrical or hydro processes to thermal energy in the medium. (Hayat, 2008) 

investigated mass transfer in a steady two-dimensional boundary layer flow of MHD of a 

potential to lift Maxwell fluid via a porous shrinking sheet in the absence of a chemical reaction. 

The study used a HAM method to obtain formulas for the velocity and concentration 

distributions.  

(Mahapatra, 2001) carried out a study that looked at the continuous 2D flow of a non-

compressible fluid that conducts electricity approaching a extending surface in the presence of 

a uniform transverse magnetic field, and also determined the temperature in this flow when the 

stretch surface is kept at a constant temperature. (Mahapatra, T. R & Gupta, A. S., 2003) 

examined the flow of an incompressible fluid over a flat deformable surface at an axisymmetric 

stagnation point when the surface is extended asymmetrically in its own plane with a velocity 

that is proportional to the distance from the stagnation-point. (Roy, 2007) investigated unsteady 

mixed convection streams over a vertical cone with suction or injection and discovered that the 

buoyancy force causes an overshoot in velocity profiles near the wall for lower Prandtl numbers 
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but not for higher Prandtl numbers, and that the magnitude of the overshoot increases with the 

buoyancy parameter but decreases with time. 

(Gebhart, 1962) observed that when an induced kinetic energy exceeds the amount of 

heat transfer, the effect of viscous dissipation in natural convection becomes more prominent. 

It happens when the equivalent body force or the convection region is large. The study focused 

on vertical surfaces under isothermal and uniform-flux surface conditions. Viscous dissipation 

has been observed to have a significant impact in natural convection in a variety of systems that 

are subjected to large decelerations or operate at high rotational speeds. Additionally, significant 

viscous dissipation effects may be present in greater gravitational fields and in processes that 

occur on a large scale, such as on larger planets, large amounts of gas in space, and geological 

features in fluids within various bodies. These types of processes have been studied in the past, 

particularly in spinning cavities. Lighthill in 1953 conducted research into the possibility of 

cooling turbine blades through the fluid flow of an internal coolant, resulting in an analysis that 

outlined flow patterns and projected heat-transfer characteristics. Viscous dissipation or the 

local production of thermal energy via the framework of viscous stresses, is a common 

occurrence in both viscous flow of clear fluids and fluid flow within porous media. In 

comparison to other thermal influences on fluid motion (Examples include buoyancy forces 

induced by heated or cooled blocks, as well as localized heat sources or sinks), the impact of 

heat emitted by viscous dissipation ranges from negligible to significant, as studied by 

(Magyari, 2005). 

 



 

 

CHAPTER 3  

FUNDAMENTAL CONCEPTS AND BASIC LAWS 

Some books on the basic and physical principles of fluid have been written by (Fox, 

2006), (GENICK BAR-MEIR, 2013), (Kothandaraman, 2006), (Y. A. Cengel, 2010), (White, 

2006), (Kunes, 2012), (Smits, 2000), (Papanastasiou, 2021), (J. Kunes, 2012) and (Lwis, 2004). 

In this chapter, certain definitions from the books indicated above that include essential rules 

and notions for solving nonlinear differential equations that will be utilized in the next chapters, 

have been mentioned. 

 3.1 Basic Definitions  

In this section, a few basic definitions, laws and terminologies have been presented that 

are beneficial for further discussion. 

3.1.1  Fluid 

A fluid is a type of material that deforms continually under shear stress, with the amount 

of stress being constant. Thus, fluids have two types of liquid and gas in physical forms in which 

substance exists. 
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3.1.2 Fluid Mechanics 

Fluid mechanics is a branch of mechanics that studies the condition of fluids at rest and 

in motion. 

3.1.3 Fluid Dynamics 

Fluid Dynamics is a subfield of fluid mechanics that describes the properties of fluid as 

it moves from one site to another. 

3.1.4 Fluid Statics 

Fluid statics is a subfield of fluid mechanics that investigates the behavior of fluids in a 

stationary or resting posture. 

3.2 Physical Properties of the Fluid 

In this section, we have defined physical properties of fluid. Every fluid has own 

properties according to nature and physical appearance. 

3.2.1 Pressure 

Pressure is defined as force applied across a unit area (𝑃 =
𝐹

𝐴
). It is a vector quantity 

having SI unit pascal (Pa). Pascal is newton per square meter (
𝑁

𝑚2
,
𝑘𝑔

𝑚⋅𝑠2
), where 𝑃, 𝐹 & 𝐴 

represents pressure, force and area respectively. 
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3.2.2 Density 

Density is described as mass per unit volume (𝜌 =
𝑚

𝑣
), where 𝜌 is symbol for density, 

𝑚 is mass, and 𝑣 is volume occupied by the substance. 

3.2.3 Temperature 

Temperature is a physical property of matter that quantifies the hotness or coolness of a 

body. The temperature of an object, usually measured in Fahrenheit, kelvin and Celsius. It is 

denoted by 𝑇. Thermodynamic temperature is a measurement of the kinetic energy in a 

substance's molecules or atoms. 

3.2.4 Viscosity 

Viscosity is defined as a fluid’s resistance to progressive deformation caused by tensile 

or shear stress. In other notations, a fluid viscosity is that characteristic which measures the 

amount of resistance to the shear stress. It is denoted by µ and mathematically one can write as: 

(Viscosity =  µ =
shear stress

rate of shear strain
). 

3.2.5 Kinematic Viscosity 

Kinematic viscosity is a measure of a fluid's resistance to flow and is defined as the ratio 

of a fluid's dynamic viscosity to its density (𝜐 =
𝜇

𝜌
), where 𝜇 and 𝜌 denote dynamic viscosity 

and density respectively. The dimension of kinematic viscosity is (
𝐿2

𝑇
). 
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3.2.6 Stress 

Stress is a pressure on fluid defined as force acted upon a material per unit of its area 

and is denoted by τ. The mathematical form is (τ =
𝐹

𝐴
), where F denotes the force and A shows 

the area. 

3.2.7 Shear Stress 

Shear stress is a form of stress in which the force vector is oriented perpendicular to the 

surface or cross-section of the material.  

3.2.8 Normal Stress 

Any item or body that experiences stress from an external force perpendicular to its 

cross-sectional area will eventually return to its original shape and the tension produced by a 

force acting perpendicularly on a certain area is known as normal stress.  

3.2.9 Tensile stress 

Tensile stress is generated when a force applied perpendicular to the object's sectional 

area, causing it to stretch from its initial shape. The mathematical form is (𝜎 =
𝐹

𝐴
), where 𝜎 is 

the tensile stress, 𝐹 is the force acting and 𝐴 is the cross-sectional area. 
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3.2.10  Compressive stress  

When a force operates perpendicular to an object's surface area, compressing it to distort 

its shape, the resulting stress is known as compressive stress. The mathematical form 

is (𝜎 =
𝐹

𝐴
),where 𝐹 is force acting, 𝜎 is compressive stress and 𝐴 is the cross-section area. 

3.2.11  Newton’s Law of Viscosity 

The shear stress is directly and linearly related to the velocity gradient in this respect. 

Mathematically, it can be written as: 

𝜏𝑥𝑦 ∝ (
𝜕𝑢

𝜕𝑦
), 

𝜏𝑥𝑦 = 𝜇 (
𝜕𝑢

𝜕𝑦
). 

In the above expression, 𝜏𝑥𝑦 is the shear stress applied to the velocity component ‘𝑢’ of fluid 

and 𝜇 is the viscosity proportionality constant. 

3.3 Types of Fluid Flow 

3.3.1 Flow 

It is the deformation of a material in the presence of various forces. The motion of a 

fluid influenced by many unbalanced forces is referred to as fluid flow. It is primarily a branch 

of fluid mechanics and fluid flow dealing with fluid dynamics. The fluid continues to travel 

until it is subjected to additional imbalanced forces. 
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3.3.2 Compressible and Incompressible Flows 

Flow that has minimal density variations is called incompressible, otherwise it is 

considered compressible. The flow of gases is the most typical example of compressible flow, 

whereas the movement of liquids is often described as incompressible. Mathematically, 

𝐷𝜌

𝐷𝑡
= 0, 

where 𝜌 expresses fluid density and 
𝐷

𝐷𝑡
 is derivative of the material given by 

𝐷

𝐷𝑡
=
𝜕

𝜕𝑡
+ 𝑽 ⋅ 𝛻, 

where 𝑽 is the velocity of flow and 𝛻 is the differential operator. The equation for 𝛻 in the 

Cartesian coordinate system is given. 

𝛻 =
𝜕

𝜕𝑥
𝑖̂ +

𝜕

𝜕𝑦
𝑗̂ +

𝜕

𝜕𝑧
�̂�. 

3.3.3 Uniform and Non-uniform Flows 

The flow is said to be uniform if the direction and magnitude of the velocity are same at 

every place and for the non-uniform flow at any given instant is that in which the velocity is not 

equal at each point. 

3.3.4 Steady and Unsteady Flows 

Steady flow is defined as the flow in which the fluid’s characteristics do not vary over 

the time at a single spot, 

𝜕𝜆𝑤
𝜕𝑡

= 0, 

where 𝜆𝑤 is any fluid property.  

Unsteady flow is one in which the fluid characteristics change over time, i.e. 
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𝜕𝜆𝑤
𝜕𝑡

≠ 0. 

3.3.5 Laminar and Turbulent Flows 

A flow can be either laminar, if fluid particles travel in smooth layers, but turbulent fluid 

particles rapidly mix as they flow due to random 3D velocity differences. 

3.4 Types of Fluids 

3.4.1 Ideal Fluid 

An ideal fluid is incompressible and has zero viscosity, which means that shear stress is 

always equal to zero regardless of the fluid's velocity. 

3.4.2 Real Fluid 

A compressible fluid which experiences some resistance during the flow is characterized 

as a real or viscid fluid. 

3.4.3 Newtonian and Non-Newtonian Fluids 

A Newtonian fluid is one that complies with Newton's viscosity law. Non-Newtonian 

fluids are very viscous liquids that behave like solids and remain solid or semi-solid. 

Mathematical form of Newtonian fluids: 

𝜏𝑥𝑦 = 𝜇 (
𝜕𝑢

𝜕𝑦
), 
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where µ = dynamic viscosity, 𝜏𝑥𝑦 shear stress =
𝐹

𝐴
 and  

𝜕𝑢

𝜕𝑦
 = rate of shear deformation. 

The most common examples of Newtonian fluid are water, alcohol, glycerol. Non-Newtonian 

fluids are those that do not satisfy Newton's viscosity law. For such fluids, 

𝜏𝑥𝑦 = 𝑘 (
𝜕𝑢

𝜕𝑦
)
𝑛

, 

where k represents flow consistency index and 𝑛 is the index of flow behavior. For 𝑛 =  1 and 

𝑘 = µ, the above equation decreases to the Newton’s law of viscosity. Industrial processes such 

as papermaking, textile manufacturing, and oil drilling. Non-Newtonian fluids have countless 

applications in industries such as: Food and pharmaceutical industries where they are used as 

thickeners, emulsifiers, and lubricants, construction materials such as paint and concrete, 

industrial cleaning and waste treatment and in the field of civil and mechanical engineering.  

3.4.4 Nano Fluid 

Nanofluids are a promising technology with a wide range of applications in various 

fields. They are widely used in the enhancement of heat transfer in various industrial processes 

such as electronics cooling, and power generation. In biomedical applications, they have been 

used in drug delivery and imaging. Additionally, they have been used to improve the efficiency 

of solar thermal energy systems and enhance the thermal performance of engines and 

machinery. They also have applications in improving the performance of lubricants and cutting 

fluids in manufacturing and machining processes, enhancing the performance of batteries and 

fuel cells, and in environmental remediation and water treatment. They have also been used to 

improve the efficiency of refrigeration and air-conditioning systems and enhance the 

performance of heat exchangers and heat pipes. With the ongoing research, there are more 

applications are being developed such as in the field of nanocomposite materials and in the field 

of nanotechnology. 
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3.5 Heat Transfer Mechanism and Properties 

3.5.1 Heat Transfer  

It is the energy transfer due to temperature difference between two surfaces. Heat 

transfer is normally conducted from a high temperature region to a low temperature region. For 

example, heat is transferred from stove to the cooking pan. 

3.5.2 Mass Transfer  

Mass exchange is the total movement of mass from one place to another. 

3.5.3 Conduction  

Conduction is the process in which heat is transferred through the material between the 

objects that are in physical contact. For example, frying vegetables in a pan, picking up a hot 

cup of tea, after a car starts the engine becomes hot and auto mobile radiator. 

3.5.4 Convection  

Convection is a mechanism in which heat is transferred through fluids (gases or liquids) 

from a hot place to a cool place. For example, a steaming cup of hot tea demonstrates heat 

transfer into the air. 
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3.5.5 Radiation  

Thermal radiation is the process by which heat is transported from a body due to its 

temperature without the use of an intermediary medium. For example, heat from the sun 

warming the face, heat from a light bulb, and heat from a fire toaster toast bread by using thermal 

radiation released by its element. 

3.6 Some Important Definition 

In this portion we discuss some of the important definitions. 

3.6.1 Streamlines 

A streamline is a path or line that is always parallel to the velocity field. For 2D flows, 

the streamline slop must be equal to a tangent to the angle formed by the velocity angle with 

the x-axis. 

3.6.2 Stream Function  

Stream function is a useful tool for studying fluid dynamics. The stream function is 

typically used to produce streamlines which are then used to realize the flow pattern around an 

object. A stream function is defined as one that solves the given equation. 

𝑢 =
𝜕𝜓

𝜕𝑦
, 𝑣 = −

𝜕𝜓

𝜕𝑥
. 
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3.6.3 Viscous Dissipation 

Viscous dissipation denotes the irreversible (in thermodynamic terms) conversion of 

flow kinetic energy into fluid internal energy. 

3.6.4 Thermal Conductivity 

Thermal conductivity (𝑘) is a property that describes a material's ability to conduct heat. 

The mathematical representation of heat conductivity is 

𝑘 =
𝑞𝛻𝑙

𝐴𝛻𝑡
, 

where 𝑞 is the amount of heat. Surface area 𝐴 and 𝛻𝑙 is the effect of a temperature differential 

𝛻𝑡 across a distance. 𝐴, 𝑙 and 𝛻𝑡 are assumed to be unit measurements. 

3.6.5 Thermal Diffusivity 

Thermal diffusivity is the relationship between the heat flowing through the material and the 

heat per unit of volume stored in the material. 

Mathematically 

𝛼 =
𝑘

𝜌𝑐𝜌
, 

where 𝑘 denotes thermal conductivity, 𝜌 density and 𝑐𝜌 specific heat. 

3.6.6 Mixed Convection 

The properties of both forced and natural convection are combined in mixed convection. 

When density variations induced by temperature changes generate fluid motion, this is referred 
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to as free or natural convection. When an external force, such as pumping or blowing, causes 

fluid mobility, this is referred to as forced convection. 

3.6.7 Shear Thickening Fluids 

Shear thickening fluids are a small-scale category of actual liquids whose velocity 

increases with increasing shear rate. Dilatant fluids are also known as shear thickening fluids. 

Corn starch and heat absorption paste are two examples. 

3.7 Boundary Layer 

Viscous impacts are most prevalent on solid surfaces where the strong contact between 

the fluid's particle and the solid's molecule results in a motionless surface with practically zero 

relative velocity. As a result, approaching the wall, the fluid velocity must drop to zero. This is 

known as a no slip situation. Under some conditions, the fluid and solid surfaces do not move 

relative to one another at their point of contact. As a result, huge velocity gradients form near 

to the wall as the flow velocity varies with distance from the wall increasing from zero at the 

wall to its greatest value some distance away. This area is known as a boundary layer because 

it is generally narrow (in relation to the average body dimension). 

 

Fig. 3.1: Boundary Layer 
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3.8 Solution Methodology 

To solve higher order nonlinear ordinary differential equations, the shooting method can 

be applied. To apply this method, we must first convert the higher order ODEs into a first order 

ODE system. If the missing beginning conditions exist. As an initial value issue, the Runge-

Kutta method is employed to numerically integrate the differential equations. Comparing the 

computed values of the dependent variables at the terminal point to their given value allows us 

to determine whether the fictitious missing initial condition was correct. Newton's method is 

used with the new set of beginning conditions to modify boundary conditions that are not met 

with the requisite accuracy. Until the requisite precision is attained, the procedure is done once 

again. We analyze the following general second order boundary value problem to describe the 

shooting approach. Consider 

𝑦′′(𝑥) = 𝑓(𝑥, 𝑦, 𝑦′(𝑥)),       (3.1) 

in terms of the boundary conditions  

𝑦(0) = 0, 𝑦(𝐿) = 𝐵.        (3.2) 

Let 

𝑦 = 𝑦1,  𝑦1
′ = 𝑦2.        (3.3) 

By using the notations (3.3) in (3.1) and (3.2), we get 

 𝑦1
′ = 𝑦2,            𝑦1(0) = 0,

 
 𝑦2

′ = 𝑓(𝑥,  𝑦1,  𝑦2),  𝑦1(𝐿) = 𝐵.
}      (3.4) 

Let the missing initial condition be 𝑦2(0) = 𝑝, we obtain the following IVP 

 𝑦1
′ = 𝑦2,            𝑦1(0) = 0,

 
 𝑦2

′ = 𝑓(𝑥,  𝑦1,  𝑦2),  𝑦1(𝐿) = 𝑝.
}      (3.5) 

The initial value issue now meets the boundary condition 𝑦2(𝐿) = 𝐵. 

𝑦1(𝐿, 𝑝) − 𝐵 = 𝑔(𝑝) = 0.       (3.6) 

The Newton's method for finding an approximate root of (3.6) is expressed as  

𝑝𝑛+1 = 𝑝𝑛 −
𝑔(𝑃𝑛)

𝑔′(𝑝𝑛)
,        (3.7) 

or 
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𝑝𝑛+1 = 𝑝𝑛 −
𝑦1(𝐿,𝑝𝑛)−𝐵

𝜕

𝜕𝑝
(𝑦1(𝐿,𝑝𝑛)−𝐵)

.       (3.8) 

Consider the following representations 

𝜕𝑦1

𝜕𝑝
= 𝑦3,

𝜕𝑦2

𝜕𝑝
= 𝑦4.        (3.9) 

We derive the four ODEs and the initial conditions by differentiating (3.5) regarding 𝑝, are 

 
 𝑦3

′ = 𝑦4,     𝑦3(0) = 0,

 𝑦4
′ = 𝑦3

𝜕𝑓

𝜕𝑦1
+ 𝑦4

𝜕𝑓

𝜕𝑦2
,     𝑦4(0) = 1.

}     (3.10) 

Now, solving the IVP (3.10), we get 𝑦3 at 𝐿. This is derivative of 𝑦1 with respect to 𝑝 

to compute at 𝐿. Using the value of 𝑦3(𝐿, 𝑝) in (3.8), modified value of 𝑝 can be achieved. New 

value of 𝑝 can be utilized to solve the problem (3.10) and the method is repeated until the 

required precision. 

3.9 Laws of Conservation and Basic Equations 

Three conservation laws, which can be expressed in integral or differential form are 

used to model the problems in fluid dynamics. The integral formulations of these laws represent 

changes in mass, momentum or energy inside the control volume. 

3.9.1 Continuity Equation  

The equation of continuity represents the mass conservation of fluid entering and 

leaving the control volume, as well as the resulting mass balance. This equation demonstrates 

mass conservation.  

𝜕𝜌

𝜕𝑡
+ 𝛻 ⋅ (𝜌𝑽) = 0.        (3.11) 

where 𝜌 is the density of the fluid, 𝑡 is time, 𝑽 is the velocity of the fluid, Equation (3.11) for 

constant flow can be written as 

𝛻 ⋅ (𝜌𝑽) = 0.         (3.12) 
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In the case of incompressible flow, equation (3.12) becomes 

𝛻 ⋅ 𝑽 = 0.         (3.13) 

3.9.2 Momentum Equation  

The term "linear momentum" refers to the sum of a body's mass and velocity. Newton's 

second law states that the rate of change in momentum of a body is equal to the net force applied 

to the body, so a body's acceleration is proportional to the net force applied to it and inversely 

related to its mass. As a result, when no net force acts on a system, its momentum is constant, 

and such systems' momentum is conserved. This is referred to by the momentum conservation 

principle. The momentum equation for any fluid is 

𝜕(𝜌𝑉)

𝜕𝑡
+ 𝛻. [(𝜌𝑽)𝑉] − 𝛻 ⋅ 𝑇 − 𝜌𝑔 = 0.     (3.14) 

Since 𝑇 = −𝑃𝐼 + 𝜏, the momentum equation takes the form 

𝜌 (
𝜕𝑽

𝜕𝑡
+ 𝑽.𝛻𝑽) = 𝛻 ⋅ (−𝑃𝐼 + 𝜏) + 𝜌𝑔.     (3.15) 

The basis vectors of an orthogonal coordinate system are combined using the scalar product, A 

can be divided into three scalar parts equation (3.15). By setting 𝑔 = 𝑔𝛻𝑧, where 𝑧 is distance 

in direction of gravity from an arbitrary reference elevation can be also expressed as 

𝜌 (
𝜕𝑽

𝜕𝑡
+ 𝑽.𝛻𝑽) = 𝛻 + 𝛻(𝜌𝑔𝑧).      (3.16) 

According to the momentum equation, a particle accelerates after it begins to move due to a net 

force represented by the pressure, viscous, and gravitational gradients. 

3.9.3 Energy Equation 

The first law of thermodynamics is a natural rule, commonly known as the concept of 

energy conservation. It asserts that energy cannot be generated or destroyed throughout a 

process, it can only change form. In two-dimensional system, energy equation for base fluid 

can be expressed as in form of 𝑇 temperature. 
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𝑽 ⋅ 𝛻𝑇 = 𝛼𝛻2𝑇.        (3.17) 

3.10 Dimensionless Parameters 

3.10.1  Prandtl Number  

Prandtl number is ratio between the viscous diffusivity and the thermal diffusivity. 

Mathematically, it can be written as 

𝑃𝑟 =
𝜐

𝛼
=

𝜇 𝜌⁄

𝑘 𝜌𝐶𝑃⁄
=

𝜇𝐶𝑝

𝑘
, 

where 𝛼 indicates the thermal diffusivity and 𝜐 represents the viscous diffusivity. It 

characterizes the physical properties of a fluid with convective and diffusive transfers. 

3.10.2  Eckert Number  

Eckert number is the dimensionless number used in the mechanical behavior of 

materials modeled as a continuous mass rather than as separate particles. It describes ratio 

between advective transport (heat difference at boundary layer) and heat dissipation potential. 

Mathematical form of Eckert number is 

𝐸𝑐 =
𝑢2

𝐶𝑝𝛻𝑇
, 

where 𝑢 is velocity, 𝐶𝑝 is specific heat and  𝛻𝑇 is difference between internal body and wall 

temperature. 

3.10.3  Schmidt Number  

It is the ratio of viscosity 𝜐 to molecular diffusion 𝐷. It is denoted by 𝑆𝑐. Mathematical 

form is 
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𝑆𝐶 =
𝜐

𝐷
, 

where 𝜐 is kinematic viscosity and 𝐷  is  the mass diffusivity. 

 3.10.4 Nusselt Number  

Convective to conductive heat transfer to the boundary is measured as the Nusselt 

number. It is denoted by 𝑁𝑢, mathematically expressed 

𝑁𝑢 =
ℎ𝐿

𝑘𝑓
, 

where ℎ is convective heat transfer, 𝐿 defines characteristic length and 𝑘𝑓   describes thermal 

conductivity. 

3.10.5  Sherwood Number  

The ratio of convective mass transfer to diffusion mass transfer is expressed by the 

Sherwood number, a non-dimensional quantity. Mathematically 

𝑆ℎ =
𝑘𝐿

𝐷𝑚
, 

where 𝐿 is characteristics length, 𝑘 is mass transfer co-efficient and 𝐷𝑚 is mass diffusivity. 

  



 

 

CHAPTER 4  

MODELING OF HEAT AND MASS TRANSFER OF 

RADIATIVE MHD CASSON WITH CHEMICAL REACTION 

4.1 Introduction 

In this chapter, we have reviewed (S. M. Ibrahim, 2020) the impact of heat source, 

chemical reaction, MHD and suction/injection on Casson fluid over an exponentially penetrable 

stretching sheet. Applicable similarity transformation is used to convert PDEs into ODEs and 

shooting method has been used to achieve the numerical results. A variety of factors, including 

magnetic properties, exponential behavior, suction and injection techniques, radiation 

principles, the Prandtl and Eckert numbers, the heat source factor, the Schmidt number and 

chemical reaction constants, are presented and illustrated through the use of tables and graphs. 

4.2 Mathematical Formulation 

The movement of a Casson fluid across a stretched sheet in 2D steady incompressible 

MHD with stagnation point has been studied. The location of an exponentially stretched sheet 

is at 𝑦 = 0. The flow of Casson fluid confined to 𝑦 >  0. Magnetic field  𝐵 = 𝐵0𝑒
𝑁𝑥

𝐿  is applied 

normally to sheet. In the flow region, no electric field exists. The flow zone is characterized by 

a relatively weak induced magnetic field, resulting in a relatively low magnetic Reynolds 

number. Consider chemical reaction 𝑘1 = 𝑘0𝑒
𝑁𝑥

𝐿  and heat source 𝑄 = 𝑄𝑡𝑒
𝑁𝑥

𝐿 . Due to two 

opposing pressures, the surface is extended along x- axis, origin is locked in place and sheet 

produces a thin slit. Constitutive equation for Casson fluid flow that is isotropic and 

incompressible is: 
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𝜏𝑖𝑗 = {
2 (𝜇𝐵 +

𝑝𝑦

√2𝜋
)  𝑒𝑖𝑗, 𝜋 > 𝜋𝑐,

2 (𝜇𝐵 +
𝑝𝑦

√2𝜋𝑐
) 𝑒𝑖𝑗, 𝜋𝑐 > 𝜋,

      (4.1) 

where 𝜇𝐵 is non-Newtonian fluid's plastic dynamic viscosity, 𝑝𝑦 is fluid's yield stress, π is the 

product of the deformation rate component and 𝜋𝑐 is a critical parameter for the product in a 

non-Newtonian model. 

 

Fig. 4.1: Geometry of physical model. 

The governing equations for the flow are as follows. 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
 = 0,         (4.2) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜈 (1 +

1

𝛽
)
𝜕2𝑢

𝜕𝑦2
+ 𝑔𝛽𝑇(𝑇 − 𝑇∞) + 𝑔𝛽𝐶(𝐶 − 𝐶∞) −

𝜎𝐵2𝑢

𝜌
, (4.3) 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝑘

𝜌𝐶𝑝

𝜕2𝑇

𝜕𝑦2
+

𝜈

𝐶𝑝
(1 +

1

𝛽
) (

𝜕𝑢

𝜕𝑦
)
2

−
1

𝜌𝐶𝑝
 
𝜕𝑞𝑟

𝜕𝑦
−

1

𝜌𝐶𝑝
𝑄𝑡(𝑇 − 𝑇∞), (4.4) 

 𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷𝑚

𝜕2𝐶

𝜕𝑦2
− 𝑘1(𝐶 − 𝐶∞),     (4.5) 

with boundary conditions 
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𝑢 = 𝑈, 𝑣 = −𝑉(𝑥), 𝑇 = 𝑇𝑤, 𝐶 = 𝐶𝑤, 𝑎𝑡 𝑦 = 0,    (4.6) 

𝑢 → 0, 𝑇 → 𝑇∞, 𝐶 = 𝐶∞, 𝑎𝑡 𝑦 → ∞.      (4.7) 

Similarity transformations to be used are 

𝑢=𝑈0𝑒
𝑁𝑥
𝑙 𝑓′(ξ),            𝑣=−√

𝑈0𝜈

2𝑙
𝑒
𝑁𝑥
2𝑙 𝑁[𝑓(ξ)+𝜉𝑓′(ξ)],          𝜉=𝑦√

𝑈0
2𝑣𝑙
𝑒
𝑁𝑥
2𝑙 ,   𝑣=

𝜕𝜓

𝜕𝑥
,

𝜓=√2𝑈0𝑣𝑙 𝑒
𝑁𝑥
2𝑙 𝑓(ξ),          𝑇=𝑇∞+𝑇0𝑒

2𝑁𝑥
𝑙 𝜃(ξ),          𝐶=𝐶∞+𝐶0𝑒

2𝑁𝑥
𝑙 𝜙(ξ),   u=

𝜕𝜓

𝜕𝑦
,
}   (4.8) 

where 𝜉 is similarity variable, 𝜓 is stream function, 𝑓 (𝜉) is dimensionless stream 

function, 𝜃(𝜉) dimensionless temperature of the fluid in the boundary layer region and 𝜙(𝜉) 

dimensionless concentration of the fluid in the boundary layer region. 

For the computation of velocity components along the x and y-axes the equations are 

𝑢 = 𝑈0𝑒
𝑁𝑥

𝑙 𝑓′(ξ),        (4.9) 

𝑣= −√
𝑈0𝜈

2𝑙
𝑒
𝑁𝑥

2𝑙𝑁[𝑓(ξ) + 𝜉𝑓′(ξ)].      (4.10) 

Using (4.9) and (4.10) in (4.2), the equation of continuity is satisfied identically. 

Equation (4.3) into dimensionless form is  

(1 +
1

𝛽
) 𝑓′′′ +  𝑁(𝑓𝑓′′ − 2𝑓′

2
) + 2𝐺𝑟 𝜃 + 2𝐺𝑐 𝜙 −𝑀𝑓′ = 0.  (4.11) 

Equation (4.4) becomes  

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝑘

𝜌𝐶𝑝

𝜕2𝑇

𝜕𝑦2
+
𝜈

𝐶𝑝
(1 +

1

𝛽
)(
𝜕𝑢

𝜕𝑦
)
2

−
1

𝜌𝐶𝑝
 
𝜕𝑞𝑟
𝜕𝑦

−
1

𝜌𝐶𝑝
𝑄0(𝑇 − 𝑇∞). 

The Rosseland radiative heat flux is represented by 𝑞𝑟 also define as 

𝑞𝑟 = −
4𝜎∗

3𝑘∗
𝜕𝑇4

𝜕𝑦
, 

𝑘∗ is absorption coefficient, 𝜎∗ is Boltzmann constant. If temperature constant is comparatively 

small, 𝑇4 can be stretched around 𝑇 ∞ using the Taylor series. The reduced Taylor series takes 

the form by ignoring the higher order terms as 

𝑇4 = 4𝑇∞
3𝑇 − 3𝑇∞

4 , 

𝑇 = 𝑇∞ + 𝑇0𝑒
2𝑁𝑥
𝑙 𝜃(ξ), 

𝐶 = 𝐶∞ + 𝐶0𝑒
2𝑁𝑥
𝑙 𝜑(ξ). 

Dimensionless form of (4.4) is 
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(1 +
4

3
𝑅) 𝜃′′ + 𝑃𝑟𝑁(𝜃′𝑓 − 4𝑓′𝜃) + (1 +

1

𝛽
)𝑃𝑟𝐸𝑐𝑓′′2 − Pr𝑄𝑇 𝜃 = 0. (4.12) 

Equation (4.5) in dimensionless form is  

𝜙′′+𝑆𝑐𝑁(𝜙′𝑓 − 4𝑓′𝜙) − 𝑆𝑐𝛾 𝜙 = 0.     (4.13) 

The set of ordinary differential equations obtained is 

(1 +
1

𝛽
)𝑓′′′ +  𝑁 (𝑓𝑓′′ − 2𝑓′

2
)+ 2𝐺𝑟 𝜃 + 2𝐺𝑐 𝜙 −𝑀𝑓′ = 0,

(1 +
4

3
𝑅)𝜃′′ +𝑃𝑟𝑁 (𝜃′𝑓 − 4𝑓′𝜃)+ (1 +

1

𝛽
)𝑃𝑟𝐸𝑐𝑓′′

2
− Pr𝑄𝑇 𝜃 = 0,

𝜙′′ + 𝑆𝑐𝑁 (𝜙′𝑓 − 4𝑓′𝜙)− 𝑆𝑐𝛾 𝜙 = 0, }
 
 

 
 

 (4.14) 

with the boundary conditions 

𝑓 = S, 𝑓′  = 1, 𝜃 = 1,𝜙 = 1,           at 𝜉 = 0,

𝑓′ = 0, 𝜃 = 0,𝜙 = 0,                        as 𝜉 → ∞.
}    (4.15) 

In the above equations, 𝑁 represent the exponential parameter, 𝐺𝑟 for the thermal 

Grashof number, 𝐺𝑐 for the concentration Grashof number, 𝑅 for the radiation parameter, 𝑀 for 

magnetic parameter, Prandtl number is represent with 𝑃𝑟, 𝐸𝑐 for Eckert number, heat generation 

parameter is denoted with 𝑄, Scmidt number is denoted with 𝑆𝑐, γ is chemical reaction and 𝑆 

is denoting the suction and injection parameter. Value of these parameters are given as 

𝑃𝑟= 
𝜌𝐶𝑝𝑣

𝑘
,  Gr = 

𝑔𝛽𝑇𝑇0𝐿

𝑈0
2 ,  Gc = 

𝑔𝛽𝑐𝐶0𝐿

𝑈0
2 ,   Sc = 

𝜈

𝐷𝑚
,  Ec = 

𝑈0
2

𝐶𝑝𝑇0 
,  

𝑀 =
2𝐿𝜎𝐵0

2

𝜌𝑈0
,  𝑄𝑇 =

2𝑄0𝐿

𝜌𝐶𝑝𝑈0
,  R=

4𝜎∗

𝑘𝑘∗
𝑇∞
3 ,  S=

𝑣0

√
𝜈𝑈0
2𝐿

, 𝛾 =
2𝑘0𝐿

𝑈0
. 

4.3 Physical Quantity 

Mathematical form of skin friction coefficient is  

𝑐𝑓 = (
𝜏𝑤

𝜌𝑈𝑤
2).         (4.16) 

Mathematical form of Local Nusselt coefficients is 

𝑁𝑢𝑥 = (
𝑥𝑞𝑤

𝑘(𝑇𝜔−𝑇∞)
).        (4.17) 
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Mathematical form of local Sherwood number is 

𝑆ℎ𝑥 = (
𝑥𝑞𝑚

𝐷𝑚(𝐶𝜔−𝐶∞)
),        (4.18) 

where 𝑞𝑤 is heat fluxes, 𝑞𝑚 is mass fluxes and 𝜏𝑤 represent the shear stress at the surface. These 

are defined as 

𝜏𝑤 = 𝜇𝐵 (1 +
1

𝛽
) (

𝜕𝑢

𝜕𝑦
)
𝑦=0

,  𝑞𝑤 = (−(𝑘 +
16𝜎∗𝑇𝛼

3

3𝑘∗
) (

𝜕𝑇

𝜕𝑦
))

𝑦=0

, 

𝑞𝑚 = −𝐷𝑚 (
𝜕𝐶

𝜕𝑦
)
𝑦=0

.         (4.19) 

The dimensionless quantities obtained are: - 

√𝑅𝑒𝑥𝑐𝑓 = (1 +
1

𝛽
) 𝑓′′(0), (𝑅𝑒𝑥)

−1

2 𝑁𝑢𝑥 = (−(1 +
4𝑅

3
) 𝜃′(0)), 

and (𝑅𝑒𝑥)
−1

2 𝑆ℎ𝑥 = (−𝜙
′(0)), 

where 𝑅𝑒𝑥 is Reynolds number. 

4.4  Solution Methodology  

The systems of nonlinear ordinary differential equation (4.14) and appropriate boundary 

condition (4.15) are first order ODEs that have been transformed. Shooting method is used to 

solve first order ODEs with proper boundary conditions.  

𝑓′′′ =
1

(1+
1

𝛽
)
 (𝑀𝑓′ − 𝑁(𝑓𝑓′′ − 2𝑓′

2
) − 2𝐺𝑟 𝜃 − 2𝐺𝑐 𝜙),   (4.20) 

𝜃′′ =
1

(1+
4

3
𝑅)
(Pr𝑄𝑇 𝜃 − 𝑃𝑟𝑁(𝜃

′𝑓 − 4𝑓′𝜃) − (1 +
1

𝛽
) 𝑃𝑟𝐸𝑐𝑓′′2),  (4.21) 

𝜙′′ = (𝑆𝑐𝛾 𝜙 − 𝑆𝑐𝑁(𝜙′𝑓 − 4𝑓′𝜙)).      (4.22) 

Since equations (4.20), (4.21) and (4.22) contain functions of 𝑓 , 𝜃 and ϕ and its 

derivatives. The solution of equation (4.20) can be utilized to recognize results in equations 

(4.21) and (4.22). We are aware of the basic conditions stated at 𝜉 = 0 in the above ODEs, 

equations (4.20), (4.21) and (4.22) give the unidentified condition that is portrayed 

by 𝑊, 𝑃 and 𝑍 respectivly. We have established the symbols for further explanation. 

𝑦1 = 𝑓, 𝑦2 = 𝑦1
′ = 𝑓′, 𝑦3 = 𝑦2

′ = 𝑓′′, 𝑦4 = 𝜃,𝑦5 = 𝜃
′, 𝑦6 =  𝜙, 𝑦7 = 𝜙′. 
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The system of ODEs (4.20), (4.21), (4.22) and corresponding initial condition may be 

represented as:  

𝑦1 = 𝑓,  

𝑦2 = 𝑦1
′ = 𝑓′,        𝑦1(0) = 𝑆, 

𝑦3 = 𝑦2
′ = 𝑓′′,        𝑦2(0) = 1, 

𝑦3
′ = 𝑓′′′ =

1

(1+
1

𝛽
)
 (
𝑀𝑦2 − 𝑁(𝑦1𝑦3 − 2𝑦2

2) − 2𝐺𝑟 𝑦4
−2𝐺𝑐 𝑦6

),  𝑦3(0) = 𝑊, 

𝑦4 = 𝜃, 

𝑦5 = 𝜃
′,        𝑦4(0) = 1, 

𝑦5
′ = 𝜃′′ =

1

(1+
4

3
𝑅)
(
Pr𝑄𝑇 𝑦4 − 𝑃𝑟𝑁(𝑦1𝑦5 − 4𝑦2𝑦4)

− (1 +
1

𝛽
)𝑃𝑟𝐸𝑐𝑦3

2 ),  𝑦5(0) = 𝑃, 

𝑦6 =  𝜙, 

𝑦7 = 𝜙
′,        𝑦6(0) =  1, 

𝑦7
′ = 𝜙′′ = (𝑆𝑐𝛾 𝑦6 − 𝑆𝑐𝑁(𝑦1𝑦7 − 4𝑦2𝑦6)),   𝑦7(0) = 𝑍. 

The RK-4 technique has been used to solve the IVP consisting of the above ODEs for 

some appropriate substitutes of 𝑊,𝑃 and 𝑍. The missing condition of velocity profile, 

temperature profile and concentration profile can be taken at 𝑊 = 𝑊(0), 𝑃 = 𝑃(0) and 𝑍 = 𝑍(0) 

respectively and the Newton’s technique may be used to discover the roots. 

Domain for approximate numerical results [0, 𝜉∞], where 𝜉∞ is chosen in such a way 

that no discernible modifications are obtained by advancing beyond. The following is the 

shooting method's stopping condition 

max{|𝑦2 − 0|, |𝑦4 − 0|, |𝑦6 − 0|} < 𝜀,     (4.23) 

where 𝜀 is a small positive real number. where 𝜀 =  10−8 is the number used in the 

numerical computation. 

4.5  Result and Discussion  

The current section presents numerical data in the form of graphs and tables to illustrate 

the outcomes of the equations discussed in previous sections. These results were obtained by 
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varying several key factors such as the exponential parameter 𝑁, Grashof number 𝐺𝑟, 

concentration Grashof number 𝐺𝑐, radiation parameter 𝑅, magnetic parameter 𝑀, Prandtl 

number 𝑃𝑟, Eckert number 𝐸𝑐, heat generation parameter 𝑄𝑇, Schmidt number 𝑆𝑐, chemical 

reaction 𝛾, suction and injection parameter 𝑆, skin friction coefficient, Sherwood and Nusselt 

numbers. The physical characteristics have a direct effect on the temperature, concentration, 

and velocity profiles. 

Tables 4.1 and 4.2 demonstrate how various physical parameters affect the skin friction, 

Nusselt and Sherwood number for Newtonian and Casson fluids, respectively. When the 

exponential and suction parameters increase, the Nusselt and Sherwood numbers also increase, 

despite decrease in skin friction coefficient. Moreover, heat transfer rate increases as the Prandtl 

number and heat source parameter increase, while skin friction coefficient and mass transfer 

rate decrease. The Eckert number has an inverse relationship with skin friction, with an increase 

in the Eckert number resulting in a decrease in the skin friction coefficient, an increase in the 

mass transfer rate, and a decrease in the rate of heat transmission. Finally, as chemical reaction 

parameter and Schmidt number increase, skin friction coefficient and rate of heat transmission 

decrease. 

  



42 

 

Table 4.1: Variation in − (1 +
1

𝛽
) 𝑓′′(0),−(1 +

4

3
𝑅) 𝜃′(0) and  −𝜙′(0) for Newtonian fluid. 

𝑵 𝑴 𝑮𝒓 𝑮𝒄 𝑺 𝑷𝒓 𝑹 𝑸 𝑬𝒄 𝑺𝒄 𝜸 −(𝟏 +
𝟏

𝜷
)𝒇′′(𝟎) −(𝟏 +

𝟒

𝟑
𝑹)𝜽′(𝟎) −𝝓′(𝟎) 

1.0 0.5 0.1 0.1 0.5 0.7 0.1 0.2 0.2 0.6 0.1 1.56377467 1.65202079 1.46616861 

1.5 0.5 0.1 0.1 0.5 0.7 0.1 0.2 0.2 0.6 0.1 1.98090802 2.03184484 1.81881485 

2.0 0.5 0.1 0.1 0.5 0.7 0.1 0.2 0.2 0.6 0.1 2.36033938 2.36408617 2.12720864 

1.5 0.0 0.1 0.1 0.5 0.7 0.1 0.2 0.2 0.6 0.1 1.82329481 2.08462292 1.85698287 

1.5 0.3 0.1 0.1 0.5 0.7 0.1 0.2 0.2 0.6 0.1 1.91969602 2.05222701 1.8335295 

1.5 1.0 0.1 0.1 0.5 0.7 0.1 0.2 0.2 0.6 0.1 2.12506942 1.98444449 1.78472990 

1.5 0.5 0.2 0.1 0.5 0.7 0.1 0.2 0.2 0.6 0.1 1.91549065 2.05527437 1.83585430 

1.5 0.5 0.5 0.1 0.5 0.7 0.1 0.2 0.2 0.6 0.1 1.72910060 2.11513056 1.87908731 

1.5 0.5 1.0 0.1 0.5 0.7 0.1 0.2 0.2 0.6 0.1 1.44041467 2.19382611 1.93587483 

1.5 0.5 0.1 0.2 0.5 0.7 0.1 0.2 0.2 0.6 0.1 1.91483109 2.05596468 1.83640036 

1.5 0.5 0.1 0.5 0.5 0.7 0.1 0.2 0.2 0.6 0.1 1.72715844 2.11688587 1.88044593 

1.5 0.5 0.1 1.0 0.5 0.7 0.1 0.2 0.2 0.6 0.1 1.43720882 2.19615511 1.93764130 

1.5 0.5 0.1 0.1 0.0 0.7 0.1 0.2 0.2 0.6 0.1 1.59785779 1.85141733 1.64274881 

1.5 0.5 0.1 0.1 0.3 0.7 0.1 0.2 0.2 0.6 0.1 1.81676204 1.95645497 1.74468402 

1.5 0.5 0.1 0.1 1.0 0.7 0.1 0.2 0.2 0.6 0.1 2.45373881 2.24592580 2.03160714 

1.5 0.5 0.1 0.1 0.5 0.3 0.1 0.2 0.2 0.6 0.1 1.95105992 1.14760614 1.83749502 

1.5 0.5 0.1 0.1 0.5 0.5 0.1 0.2 0.2 0.6 0.1 1.96950025 1.62081077 1.82558398 

1.5 0.5 0.1 0.1 0.5 1.0 0.1 0.2 0.2 0.6 0.1 1.99175673 2.57639940 1.81311254 

1.5 0.5 0.1 0.1 0.5 0.7 0.0 0.2 0.2 0.6 0.1 1.98487757 1.94909625 1.81663277 

1.5 0.5 0.1 0.1 0.5 0.7 0.5 0.2 0.2 0.6 0.1 1.96776111 2.30576404 1.8266677 

1.5 0.5 0.1 0.1 0.5 0.7 1.0 0.2 0.2 0.6 0.1 1.95561081 2.57142407 1.84449001 

1.5 0.5 0.1 0.1 0.5 0.7 0.1 0.1 0.2 0.6 0.1 1.97986681 2.00231643 1.81947072 

1.5 0.5 0.1 0.1 0.5 0.7 0.1 0.5 0.2 0.6 0.1 1.98353025 2.11475966 1.81722761 

1.5 0.5 0.1 0.1 0.5 0.7 0.1 1.0 0.2 0.6 0.1 1.98686925 2.23949006 1.81533374 

1.5 0.5 0.1 0.1 0.5 0.7 0.1 0.2 0.1 0.6 0.1 1.98152998 2.08223962 1.81854809 

1.5 0.5 0.1 0.1 0.5 0.7 0.1 0.2 0.5 0.6 0.1 1.97904868 1.88108717 1.81961084 

1.5 0.5 0.1 0.1 0.5 0.7 0.1 0.2 1.0 0.6 0.1 1.97597126 1.63123159 1.82092344 

1.5 0.5 0.1 0.1 0.5 0.7 0.1 0.2 0.2 0.4 0.1 1.96618848 2.04343630 1.37367699 

1.5 0.5 0.1 0.1 0.5 0.7 0.1 0.2 0.2 0.7 0.1 1.98956497 2.02565068 2.17740042 

1.5 0.5 0.1 0.1 0.5 0.7 0.1 0.2 0.2 1.0 0.1 1.99697252 2.02085708 2.57850407 

1.5 0.5 0.1 0.1 0.5 0.7 0.1 0.2 0.2 0.6 0.0 1.97972787 2.03283681 1.79215431 

1.5 0.5 0.1 0.1 0.5 0.7 0.1 0.2 0.2 0.6 0.5 1.98460723 2.02887604 1.91604997 

1.5 0.5 0.1 0.1 0.5 0.7 0.1 0.2 0.2 0.6 1.0 1.98795513 2.02636482 2.02364856 
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Table 4.2: Variation in − (1 +
1

𝛽
) 𝑓′′(0),−(1 +

4

3
𝑅) 𝜃′(0) and  −𝜙′(0) for Casson fluid. 

𝑵 𝑴 𝑮𝒓 𝑮𝒄 𝑺 𝑷𝒓 𝑹 𝑸 𝑬𝒄 𝑺𝒄 𝜸 −(𝟏 +
𝟏

𝜷
)𝒇′′(𝟎) −(𝟏 +

𝟒𝑹

𝟑
)𝜽′(𝟎) −𝝓′(𝟎) 

1.0 0.5 0.1 0.1 0.5 0.7 0.1 0.2 0.2 0.6 0.1 1.88596201 1.7094665821 1.52977990 

1.5 0.5 0.1 0.1 0.5 0.7 0.1 0.2 0.2 0.6 0.1 2.361132640 2.11450112 1.90574423 

2.0 0.5 0.1 0.1 0.5 0.7 0.1 0.2 0.2 0.6 0.1 2.788532733 2.46996675 2.23535769 

1.5 0.0 0.1 0.1 0.5 0.7 0.1 0.2 0.2 0.6 0.1 2.170104992 2.16303344 1.9380928 

1.5 0.3 0.1 0.1 0.5 0.7 0.1 0.2 0.2 0.6 0.1 2.286960138 2.13329883 1.91825592 

1.5 1.0 0.1 0.1 0.5 0.7 0.1 0.2 0.2 0.6 0.1 2.535828616 2.07046650 1.87653047 

1.5 0.5 0.2 0.1 0.5 0.7 0.1 0.2 0.2 0.6 0.1 2.294083055 2.13049117 1.91635519 

1.5 0.5 0.5 0.1 0.5 0.7 0.1 0.2 0.2 0.6 0.1 2.099917296 2.17351809 1.94491402 

1.5 0.5 1.0 0.1 0.5 0.7 0.1 0.2 0.2 0.6 0.1 1.793536548 2.23367278 1.98513015 

1.5 0.5 0.1 0.2 0.5 0.7 0.1 0.2 0.2 0.6 0.1 2.294028527 2.13064193 1.91646584 

1.5 0.5 0.1 0.5 0.5 0.7 0.1 0.2 0.2 0.6 0.1 2.099887775 2.17386952 1.94516799 

1.5 0.5 0.1 1.0 0.5 0.7 0.1 0.2 0.2 0.6 0.1 1.793785331 2.23397833 1.98534593 

1.5 0.5 0.1 0.1 0.0 0.7 0.1 0.2 0.2 0.6 0.1 1.977859228 1.90873279 1.70617251 

1.5 0.5 0.1 0.1 0.3 0.7 0.1 0.2 0.2 0.6 0.1 2.361132640 2.11450112 1.90574423 

1.5 0.5 0.1 0.1 1.0 0.7 0.1 0.2 0.2 0.6 0.1 2.818151662 2.35143189 2.13826361 

1.5 0.5 0.1 0.1 0.5 0.3 0.1 0.2 0.2 0.6 0.1 2.328800525 1.21205595 1.91711755 

1.5 0.5 0.1 0.1 0.5 0.5 0.1 0.2 0.2 0.6 0.1 2.349207824 1.69825055 1.90968604 

1.5 0.5 0.1 0.1 0.5 1.0 0.1 0.2 0.2 0.6 0.1 2.372108815 2.66122315 1.90252489 

1.5 0.5 0.1 0.1 0.5 0.7 0.0 0.2 0.2 0.6 0.1 2.365181737 2.02303610 1.90450490 

1.5 0.5 0.1 0.1 0.5 0.7 0.5 0.2 0.2 0.6 0.1 2.347346014 2.41815155 1.91033441 

1.5 0.5 0.1 0.1 0.5 0.7 1.0 0.2 0.2 0.6 0.1 2.333974942 2.71151683 1.91517824 

1.5 0.5 0.1 0.1 0.5 0.7 0.1 0.1 0.2 0.6 0.1 2.360245062 2.08798020 1.90604746 

1.5 0.5 0.1 0.1 0.5 0.7 0.1 0.5 0.2 0.6 0.1 2.363433329 2.19004419 1.90498300 

1.5 0.5 0.1 0.1 0.5 0.7 0.1 1.0 0.2 0.6 0.1 2.366477279 2.30584778 1.90402761 

1.5 0.5 0.1 0.1 0.5 0.7 0.1 0.2 0.1 0.6 0.1 2.362022783 2.17119261 1.90550785 

1.5 0.5 0.1 0.1 0.5 0.7 0.1 0.2 0.5 0.6 0.1 2.358471993 1.94498460 1.90644966 

1.5 0.5 0.1 0.1 0.5 0.7 0.1 0.2 1.0 0.6 0.1 2.354069697 1.66429653 1.90761328 

1.5 0.5 0.1 0.1 0.5 0.7 0.1 0.2 0.2 0.4 0.1 2.345670261 2.12206704 1.45168413 

1.5 0.5 0.1 0.1 0.5 0.7 0.1 0.2 0.2 0.7 0.1 2.369888170 2.11063551 2.26790752 

1.5 0.5 0.1 0.1 0.5 0.7 0.1 0.2 0.2 1.0 0.1 2.377262985 2.10768290 2.67100444 

1.5 0.5 0.1 0.1 0.5 0.7 0.1 0.2 0.2 0.6 0.0 2.360172560 2.11498842 1.88230096 

1.5 0.5 0.1 0.1 0.5 0.7 0.1 0.2 0.2 0.6 0.5 2.364274787 2.11296724 1.99314478 
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The relationship between 𝑀 and the dimensionless velocity profile 𝑓′(𝜉) is seen in Fig. 

4.1. Typically, increasing 𝑀 produces the Lorentz force and collision between molecules 

increases force causing the temperature of fluid to rise and the velocity to fall at boundary layer. 

The magnetic parameter 𝑀 is proportional to the magnetic field strength squared and inversely 

proportional to velocity. Fig. 4.2 analyzes the interaction of the magnetic parameter 𝑀 with 

temperature growth. A greater magnetic parameter frequently causes an opposing force known 

as the Lorentz force. Both the temperature profile and boundary layer viscosity increased 

because of the force.  We realized that when the Casson fluid is used instead of Newtonian fluid, 

the temperature profiles rise significantly. Fig. 4.3 illustrates the behavior of concentration 

supply as 𝑀 increase. It demonstrates that increasing the value of 𝑀 improves the concentration 

of fluid supply. 

As illustrated in figs 4.4 - 4.6, the exponential parameter has a significant effect on the 

skin friction coefficient, Nusselt number, and Sherwood number for both Newtonian and 

Casson fluids. As the exponential parameter increases, the fluid flow's momentum, temperature, 

and concentration boundary layers decrease. As a result, for both fluids, the velocity, 

temperature, and concentration decrease as the exponential parameter increases. 

The figs 4.7- 4.9 demonstrate the correlation between the suction parameter 𝑆 and the 

velocity, temperature and concentration profile. As the suction parameter 𝑆 increases, the fluid 

velocity, temperature, and concentration profile decreases. The figures reveal that as the value 

of S increases, the fluid is drawn closer to the surface. 

The effects of Grashof Number 𝐺𝑟 on velocity and temperature profiles are depicted in 

figs 4.10 - 4.11. The Grashof number is defined as the proportion of buoyant to viscous force 

exerted on a fluid at the boundary layer velocity. From the graphs it is seen rise in 𝐺𝑟 begins to 

increase in velocity profile and reduction in temperature profile. The system is normal to the 

wall because increasing buoyant body force reduces the value of chemical concentration inside 

the boundary layer. 

Figs 4.12 - 4.13 show how velocity and concentration profiles are affected by 

concentration Grashof Number 𝐺𝑐. Increasing the concentration Grashof number causes the 



45 

 

momentum flow separation to expand and the concentration boundary layer to contract, 

according to the graphs. 

Fig. 4.14 explore the influence of 𝑅 on energy circulation. The increasing value of 𝑅 

enhances the fluid's energy circulation. As a result of the increased value of 𝑅, the heat energy 

emitted from the fluid and the energy distribution improved. 

Fig. 4.15 depicts the effect of Prandtl Number 𝑃𝑟 on energy circulation. The Prandtl 

Number can be described as a kinematic to thermal diffusivity ratio. The Prandtl number's 

steady increase enhances fluid density while reducing temperature and improving energy 

distribution. When the Prandtl number is higher, the diffusion of heat away from the warmed 

surface is slower than when the Prandtl number is lower. 

Fig. 4.16 demonstrates the association between 𝑄𝑇 and temperature profile of the fluid. 

When compared to the heat source, the flow is independent of external heat. It is investigated 

that temperature decreases by improving the heat source 𝑄𝑇 . 

Fig. 4.17 investigates the impact of Eckert number 𝐸𝑐 on temperature profile of the 

fluid. Eckert number is defined as a ratio of fluid atom kinetic energy to thermal energy. The 

thermal boundary layers grow as 𝐸𝑐 rises. This arises because of the flow's increased thermal 

conductivity. 

Fig. 4.18 investigates the impact of Schmidt number 𝑆𝑐 on concentration profile of the 

fluid. The Schmidt number is defined as the kinematic viscosity to the molecular diffusion 

coefficient. Increase the intensity of Schmidt number, the mass transfer improves and therefore 

we examined reduction impact in the concentration profiles. 

Fig. 4.19 investigates the impact of chemical reaction parameter 𝛾 on concentration 

profile of the fluid. Increase the intensity of Chemical reaction parameter, the mass transfer 

improves and therefore we examined reduction impact in the concentration profiles. 
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Fig. 4.2: Influence of 𝑀 on 𝑓′(𝜉). 

 

Fig. 4.3: Influence of 𝑀 on 𝜃(𝜉). 



47 

 

 

Fig. 4.4: Influence of 𝑀 on 𝜙(𝜉). 

 

Fig. 4.5: Influence of 𝑁 on 𝑓′(𝜉). 
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Fig. 4.6: Influence of 𝑁 on 𝜃(𝜉). 

 

Fig. 4.7: Influence of 𝑁 on 𝜙(𝜉). 
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Fig. 4.8: Influence of 𝑆 on 𝑓′(𝜉). 

 

Fig. 4.9: Influence of 𝑆 on 𝜃(𝜉). 
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Fig. 4.10: Influence of 𝑆 on 𝜙(𝜉). 

 

Fig. 4.11: Influence of 𝐺𝑟 on 𝑓′(𝜉). 
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Fig. 4.12: Influence of 𝐺𝑟 on 𝜃(𝜉). 

 

Fig. 4.13: Influence of 𝐺𝑐 on 𝑓′(𝜉). 
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Fig. 4.14: Influence of 𝐺𝑐 on 𝜙(𝜉). 

 

Fig. 4.15: Influence of 𝑅 on 𝜃(𝜉). 
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Fig. 4.16: Influence of 𝑃𝑟 on 𝜃(𝜉). 

 

Fig. 4.17: Influence of 𝑄𝑇 on 𝜃(𝜉). 
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Fig. 4.18: Influence of 𝐸𝑐 on 𝜃(𝜉). 

 

Fig. 4.19: Influence of 𝑆𝑐 on 𝜙(𝜉). 
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Fig. 4.20: Influence of 𝛾 on 𝜙(𝜉). 

4.6 Conclusions 

The study examined the dissipative and radiative properties of a MHD flow of a Casson 

fluid on a stretching surface, considering various parameters. Key conclusions of our study are 

presented below.  

• The Casson fluid transfers heat more efficiently than the Newtonian fluid.  

• With increasing magnetic parameter values, the thin boundary layer improves.  

• We noted an acceleration in the warmness switch rate as the exponential value 

was increased.  

• The mass and heat increase with 𝐺𝑟 and 𝐺𝑐.  

• Furthermore, when chemical reaction parameter increases, concentration 

profiles decrease. 

 



 

 

CHAPTER 5  

INFLUENCE OF THERMALLY RADIATIVE STAGNATION 

POINT FLOW OF CASSON NANOFLUID WITH MAGNETIC 

FIELD 

5.1 Introduction 

In this chapter, the flow model developed by (S. M. Ibrahim, 2020) has been expanded 

to include the additional effects of inclined thermophoresis and Brownian motion, stagnation 

point, joule heating, space-based heat source and porosity. The MHD stagnation point flow has 

been studied using both exponential velocity and boundary conditions. In addition, the 

similarity transformation is used to generate a set of ODEs by changing the nonlinear PDEs of 

concentration, momentum, and temperature. We will also use the well-known Shooting method 

to compute the numerical solution of the transformed PDEs to ODEs. In the result and 

discussion part, the effect of various model parameters on velocity, temperature, concentration, 

skin friction coefficient, Nusselt and Sherwood number will be thoroughly discussed. 

5.2 Problem Formulation 

The flow of Casson nanofluid across an explorational permeable sheet in 2D steady 

incompressible MHD stagnation point has been taken into consideration. The sheet is positioned 

so that the y-axis is normal to it in the plane where y = 0 and the flow is limited to 𝑦 > 0. Due 

to two opposing forces, the surface is stretched along the x axis, the origin is fixed in place, and 

the sheet forms a thin slit. This sheet is subjected to a normal magnetic field 𝐵 = 𝐵0𝑒
𝑁𝑥

2𝐿 . The 

flow region has no electric field. Because of the low induced magnetic field, the magnetic 

Reynolds number is low in the flow zone. The sheet temperature 𝑇𝑠 is controlled by using a 
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convection heating process. 𝐶𝑤 represents the concentration of nanoparticles. The nanofluid's 

temperature and concentration are denoted by 𝑇∞ and 𝐶∞  respectively, for 𝑦 → ∞. 

 

Fig. 5.1: Geometry of physical model. 

The governing equation of flow as follows 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,         (5.1) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= (

𝜈 (1 +
1

𝛽
)
𝜕2𝑢

𝜕𝑦2
+ 𝑈∞

𝜕𝑈∞

𝜕𝑥
+
𝜎𝐵2(𝑈∞−𝑢)

𝜌
+
𝜐(𝑈∞−𝑢)

𝐾𝑝

+𝑔(𝜆1(𝑇 − 𝑇∞) + 𝜆2(𝑇 − 𝑇∞)
2)

+𝑔(𝜆3(𝐶 − 𝐶∞) + 𝜆3(𝐶 − 𝐶∞)
2)

),  (5.2) 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

(

 
 
 
 

𝑘

𝜌𝐶𝑝

𝜕2𝑇

𝜕𝑦2
+

𝜈

𝐶𝑝
(1 +

1

𝛽
) (

𝜕𝑢

𝜕𝑦
)
2

−
1

𝜌𝐶𝑝
 
𝜕𝑞𝑟

𝜕𝑦
+

1

𝜌𝐶𝑝
𝑄𝑡(𝑇 − 𝑇∞)

+
𝑄𝑒(𝑇𝑤−𝑇∞)

𝜌𝐶𝑝
𝑒
(−𝑦√

𝑎𝑈0
2𝑣𝑙

𝑒
𝑁𝑥
2𝑙 )

+ 𝜏 (𝐷𝐵
𝜕𝑐

𝜕𝑦

𝜕𝑇

𝜕𝑦
+

𝐷𝑇

𝑇∞
(
𝜕𝑇

𝜕𝑦
)
2
)

+
𝜎𝐵2(𝑈∞−𝑢)

2

𝜌𝐶𝑝 )

 
 
 
 

, (5.3) 

 𝑢
𝜕𝑐

𝜕𝑥
+ 𝑣

𝜕𝑐

𝜕𝑦
= 𝐷𝐵

𝜕2𝑐

𝜕𝑦2
+

𝐷𝑇

𝑇∞

𝜕2𝑇

𝜕𝑦2
− 𝑘1(𝐶 − 𝐶∞)

𝑚,    (5.4) 

with boundary conditions 
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(
𝑢 = 𝑈𝑤 = 𝑎𝑈0𝑒

𝑁𝑥

𝑙 , 𝑣 = 𝑣𝑤 = −𝑉(𝑥), 𝑇 = 𝑇𝑤 = 𝑇∞ + 𝑇0𝑒
(
𝑁𝑥

𝐿
)
,

  𝐶 = 𝐶𝑤 = 𝐶∞ + 𝐶0𝑒
(
𝑁𝑥

𝐿
),    

), 𝑎𝑡 𝑦 = 0, (5.5) 

𝑢 → 𝑈∞ = 𝑏𝑈0𝑒
𝑁𝑥

𝑙 , 𝑇 → 𝑇∞, 𝐶 = 𝐶∞,   𝑎𝑡 𝑦 → ∞.     (5.6) 

In the previous equations, 𝜈 kinematic viscosity, 𝛽 represents the Casson fluid 

parameter, 𝑇 represents Casson fluid nanofluid temperature and 𝑇𝑤 represent plate temperature, 

𝜎 shows the electrical conductivity, 𝑈∞ represents free stream velocity, 𝐾𝑝 represents porosity, 

𝜌 for fluid density, 𝐷𝐵 represents Brownian diffusion coefficient, 𝐷𝑇 thermophoresis diffusion 

coefficient, 𝑄𝑡 shows thermal heat generation, 𝑄𝑒 shows space based exponential heat 

generation. 

Similarity transformations to be taken into account are following 

𝑢=𝑎𝑈0𝑒
𝑁𝑥
𝑙 𝑓′(ξ),            𝑣=−√

𝑎𝑈0𝜈

2𝑙
𝑒
𝑁𝑥
2𝑙 𝑁[𝑓(ξ)+𝜉𝑓′(ξ)],          𝜉=𝑦√

𝑎𝑈0
2𝑣𝑙

𝑒
𝑁𝑥
2𝑙 ,

𝜓=√2𝑎𝑈0𝑣𝑙 𝑒
𝑁𝑥
2𝑙 𝑓(ξ),          𝑇=𝑇∞+𝑇0𝑒

2𝑁𝑥
𝑙 𝜃(ξ),          𝐶=𝐶∞+𝐶0𝑒

2𝑁𝑥
𝑙 𝜙(ξ).

}  (5.7) 

The study used similarity variables 𝜉, stream function 𝜓, dimensionless stream function 

𝑓(𝜉), dimensionless temperature of the fluid in the boundary layer region 𝜃(𝜉), and 

dimensionless concentration of the fluid in the boundary layer region 𝜙(𝜉) to analyze the flow. 

Equation (5.1) is satisfied identically. 

Equation (5.2) in dimensionless form is 

(1 +
1

𝛽
) 𝑓′′′ +  𝑁(𝑓𝑓′′ − 2𝑓′

2
) + 𝜆𝜃(1 + 𝛽1𝜃)+𝑁

∗𝜆𝜙(1 + 𝛽2𝜙) 

+𝑀(𝐴 − 𝑓′) + 𝑘𝑝
∗(𝐴 − 𝑓′) + 2𝐴2 = 0.     (5.8) 

Dimensionless form of (5.3) is 

(1 +
4

3
𝑅) 𝜃′′ + 𝑃𝑟𝑁(𝜃′𝑓 − 4𝑓′𝜃) + (1 +

1

𝛽
)𝑃𝑟𝐸𝑐𝑓′′2 − 𝑃𝑟𝑄 𝜃 

+𝑃𝑟(𝑁𝑏𝜃
′𝜙′ + 𝑁𝑡(𝜙

′)2) + 𝑃𝑟𝐸𝑐𝑀(𝐴 − 𝑓′(𝜉))
2
+ 𝑃𝑟𝑄𝐸𝑒

(−𝜉) = 0. (5.9) 

Dimensionless form of equation (5.4) is given as 

𝜙′′ + 𝑆𝑐𝑁(𝜙′𝑓′ − 4𝑓′𝜙) − 𝑆𝑐𝑘𝑐 𝜙
𝑚 +

𝑁𝑡

𝑁𝑏
𝜃′′ = 0.    (5.10) 

The set of ordinary differential equations (5.8), (5.9) and (5.10) is given below: 
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(
(1 +

1

𝛽
)𝑓′′′ +  𝑁 (𝑓𝑓′′ − 2𝑓′

2
)+ 𝜆𝜃(1 + 𝛽1𝜃)+𝑁

∗𝜆𝜙(1 + 𝛽2𝜙)

+𝑀 (𝐴 − 𝑓′)+ 𝑘𝑝
∗
(𝐴− 𝑓′)+ 2𝐴2 = 0.

)

(
(1 +

4

3
𝑅)𝜃′′ + 𝑃𝑟𝑁 (𝜃′𝑓 − 4𝑓′𝜃)+ (1 +

1

𝛽
)𝑃𝑟𝐸𝑐𝑓′′

2
+𝑃𝑟𝑄𝐸𝑒

(−𝜉)

+𝑃𝑟𝑄𝑇 𝜃 + 𝑃𝑟 (𝑁𝑏𝜃
′𝜙′ +𝑁𝑡 (𝜙

′
)
2
)+𝑃𝑟𝐸𝑐𝑀 (𝐴− 𝑓′(𝜉))

2

= 0.
)

(𝜙′′ + 𝑆𝑐𝑁 (𝜙′𝑓′ − 4𝑓′𝜙)− 𝑆𝑐𝑘𝑐 𝜙
𝑚 +

𝑁𝑡
𝑁𝑏
𝜃′′ = 0. ) }

 
 
 
 

 
 
 
 

 (5.11) 

the boundary condition are 

𝑓 = S, 𝑓′  = 1, 𝜃 = 1,𝜙 = 1,           at 𝜉 = 0,

𝑓′ = 𝐴, 𝜃 = 0,𝜙 = 0,                        as 𝜉 → ∞.
}    (5.12) 

In the above equations, 𝛽 denotes the Casson parameter, 𝑁 represent the exponential 

parameter, A for stagnation point, 𝜆 for mixed convection variable, 𝑁∗ for buoyancy force ratio, 

𝛽1for nonlinear temperature variable, 𝛽2 for nonlinear convection variable, 𝑘𝑝
∗  for porosity 

parameter, 𝑅 for Radiation parameter, 𝑀 for magnetic parameter, Prandtl number represent with 

𝑃𝑟, 𝑁𝑏 is equal to Brownian motion parameter, 𝑁𝑡 is equal to thermophoresis parameter 𝐸𝑐 for 

Eckert number, Thermal Heat generation parameter denoted with 𝑄𝑇, Space based heat 

exponential parameter represent with 𝑄𝐸, Schmidt number denoted with 𝑆𝑐, 𝑚 for order of 

chemical raction, 𝑘𝑐 is chemical reaction act on the model and 𝑆 is denoted by suction and 

injection parameter. 

Value of these parameters are given below 

𝑃𝑟= 
𝜌𝐶𝑝𝑣

𝑘
,  Gr = 

2𝑙𝑔𝜆1𝑇0𝑒
2𝑁𝑥
𝑙

𝜈2
,  Gc = 

2𝑙𝑔𝜆3𝑐0𝑒
2𝑁𝑥
𝑙

𝜈2
,   Sc = 

𝜈

𝐷𝐵
,  𝐸𝑐= 

𝑎2𝑈0
2

𝐶𝑝𝑇0 
,  

𝑁∗ =
𝜆3𝐶0

𝜆1𝑇0
, 𝛽1 =

𝜆2

𝜆1
(𝑇𝑤 − 𝑇∞), 𝛽2 =

𝜆4

𝜆3
(𝐶𝑤 − 𝐶∞), 𝑅𝑒𝑥 =

𝑈𝑤𝑥

𝜈
, 𝐴 =

𝑏

𝑎
,  

𝑀 =
2𝐿𝜎𝐵0

2

𝜌𝑎𝑈0
,  𝑄𝑇 =

2𝑄𝑡𝐿

𝜌𝐶𝑝𝑈𝑤
,  R=

4𝜎∗

𝑘𝑘∗
𝑇∞
3 , S=

𝑣0

√
𝜈𝑈0
2𝐿

, 𝑘𝑐 =
2𝑘1𝐿(𝐶𝑤−𝐶∞)

𝑚

𝑈𝑤
, 𝑄𝐸 =

2𝑙𝑄𝑒

𝜌𝐶𝑝𝑈𝑤
 

𝑘𝑝
∗ =

2𝑙𝜈

𝑘𝑝𝑈0𝑒
𝑁𝑥
𝑙

, 𝑁𝑏 =
𝜏𝐷𝐵(𝐶𝑤+𝐶∞)

𝜈
, 𝑁𝑡 = 𝜏

𝐷𝑇(𝑇𝑤−𝑇∞)

𝑇∞𝜈
, 𝜆 =

𝐺𝑟

𝑅𝑒𝑥
2. 
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5.3 Physical Quantity 

Mathematical form of skin friction coefficient is  

𝑐𝑓 = (
𝜏𝑤

𝜌𝑈𝑤
2).         (5.13) 

Local Nusselt coefficients mathematically can be given as 

𝑁𝑢𝑥 = (
𝑥𝑞𝑤

𝑘(𝑇𝜔−𝑇∞)
).        (5.14) 

Mathematical form of local Sherwood number  

𝑆ℎ𝑥 = (
𝑥𝑞𝑚

𝐷𝐵(𝐶𝜔−𝐶∞)
),        (5.15) 

where 𝑞𝑤 is heat fluxes, 𝑞𝑚 is mass fluxes and 𝜏𝑤 represent the shear stress at the 

surface. These are defined as 

𝜏𝑤 = 𝜇𝐵 (1 +
1

𝛽
) (

𝜕𝑢

𝜕𝑦
)
𝑦=0

,  𝑞𝑤 = (−(𝑘 +
16𝜎∗𝑇𝛼

3

3𝑘∗
) (

𝜕𝑇

𝜕𝑦
))

𝑦=0

, 

𝑞𝑚 = −𝐷𝐵 (
𝜕𝐶

𝜕𝑦
)
𝑦=0

.         (5.16) 

The dimensionless quantities obtained are 

√𝑅𝑒𝑥𝑐𝑓 = (1 +
1

𝛽
) 𝑓′′(0),    (𝑅𝑒𝑥)

−1

2 𝑁𝑢𝑥 = (−(1 +
4𝑅

3
) 𝜃′(0)), 

(𝑅𝑒𝑥)
−1

2 𝑆ℎ𝑥 = (−𝜙
′(0)), 

where 𝑅𝑒𝑥 is Reynold number. 

5.4  Solution Methodology  

The system of nonlinear ordinary differential equation (5.11) and suitable boundary 

condition (5.12) are converted into first order ODEs. Shooting method are using to solve first 

order ODEs with proper boundary conditions. We implement the following procedures: 

𝑓′′′ =
−1

(1+
1

𝛽
)
(
𝑁(𝑓𝑓′′ − 2𝑓′

2
) + 𝜆𝜃(1 + 𝛽1𝜃) + 𝑁

∗𝜆𝜙(1 + 𝛽2𝜙)

+𝑀(𝐴 − 𝑓′) + 𝑘𝑝
∗(𝐴 − 𝑓′) + 2𝐴2

), (5.17)  
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𝜃′′ =
−1

(1+
4

3
𝑅)

(

 

𝑃𝑟𝑁(𝜃′𝑓 − 4𝑓′𝜃) + (1 +
1

𝛽
)𝑃𝑟𝐸𝑐𝑓′′

2

+𝑃𝑟 𝑄𝑇 𝜃 + 𝑃𝑟(𝑁𝑏𝜃
′𝜙′ +𝑁𝑡(𝜙

′)2)

+𝑃𝑟𝐸𝑐𝑀(𝐴 − 𝑓′(𝜉))
2
+ 𝑃𝑟𝑄𝐸𝑒

(−𝜉) )

 ,   (5.18) 

𝜙′′ = 𝑆𝑐𝑘𝑐  𝜙
𝑚 − 𝑆𝑐𝑁(𝜙′𝑓′ − 4𝑓′𝜙) −

𝑁𝑡

𝑁𝑏
𝜃′′.    (5.19) 

Since equations (5.17), (5.18) and (5.19) are functions of 𝑓 , 𝜃 and ϕ and their derivatives, the 

solution of equation (5.17) can be utilized to recognize results in equations (5.18) and (5.19). 

We are aware of initial conditions given at 𝜉 = 0 in the above ODEs, Equations (5.17), (5.18) 

and (5.19) give the unknown conditions which is represented by 𝑊, 𝑃  and 𝑍 respectivly. We 

have established the symbols for further explanation. 

𝑦1 = 𝑓, 𝑦2 = 𝑦1
′ = 𝑓′, 𝑦3 = 𝑦2

′ = 𝑓′′, 𝑦4 = 𝜃,𝑦5 = 𝜃
′, 𝑦6 =  𝜙, 𝑦7 = 𝜙′. 

The system of ODEs (5.18), (5.19) and (5.20) as well as corresponding initial condition 

are as follows: 

𝑦1 = 𝑓,  

𝑦2 = 𝑦1
′ = 𝑓′,        𝑦1(0) = 𝑆, 

𝑦3 = 𝑦2
′ = 𝑓′′,        𝑦2(0) = 1, 

𝑦3
′ = 𝑓′′′ =

1

(1+
1

𝛽
)
 (
𝑀(𝑦2 − 𝐴) + 𝑘𝑝

∗(𝑦2 − 𝐴) − 2𝐴
2 − 𝜆 𝑦4(1 + 𝛽1𝑦4)

−𝑁∗𝜆 𝑦6(1 + 𝛽2𝑦6) − 𝑁(𝑦1𝑦3 − 2𝑦2
2)

), 

         𝑦3(0) = 𝑊, 

𝑦4 = 𝜃,  

𝑦5 = 𝜃
′,        𝑦4(0) = 1, 

𝑦5
′ = 𝜃′′ =

−1

(1+
4

3
𝑅)
(

Pr𝑄𝑇 𝑦4 + 𝑃𝑟𝑁(𝑦1𝑦5 − 4𝑦2𝑦4) + (1 +
1

𝛽
)𝑃𝑟𝐸𝑐𝑦3

2

+𝑃𝑟𝑄𝐸𝑒
(−𝜉) + 𝑃𝑟𝐸𝑐𝑀(𝐴 − 𝑦2)

2 + 𝑃𝑟(𝑁𝑏𝑦5𝑦7 + 𝑁𝑡𝑦7
2)
), 

          𝑦5(0) =  𝑃, 

𝑦6 =  𝜙, 

𝑦7 = 𝜙
′,        𝑦6(0) =  1, 

𝑦7
′ = 𝜙′′ = (𝑆𝑐𝐾𝑐𝑦6

𝑚 − 𝑆𝑐𝑁(𝑦1𝑦7 − 4𝑦2𝑦6) −
𝑁𝑡

𝑁𝑏
𝑦5
′),  𝑦7(0) = 𝑍.  

The RK-4 technique has been used to solve the IVP consisting of the above ODEs for 

some appropriate substitutes of 𝑊,𝑃 and 𝑍. The missing condition of velocity profile, 

temperature profile and concentration profile can be taken at 𝑊 = 𝑊(0), 𝑃 = 𝑃(0) and 𝑍 = 𝑍(0) 

respectively and the Newton technique may be used to discover the roots. 
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Domain for approximate numerical results [0, 𝜉∞]. where 𝜉∞ is chosen in such a way 

that no discernible modifications are obtained by advancing beyond. The following are the 

shooting method's stopping conditions: 

max{|𝑦2 − 𝐴|, |𝑦4 − 0|, |𝑦6 − 0|} < 𝜀,     (5.20) 

where 𝜀 is a small positive real number. where 𝜀 =  10−8 is the number used in the numerical 

computation. 

5.5  Result and Discussion  

In this segment use of graphs and tables to discuss the numerical conclusions of the 

equations from the preceding sections. The numerical results are obtained by altering many 

essential parameters such as exponential parameter 𝑁, buoyancy force ratio  𝑁∗, 𝛽1 nonlinear 

temperature variable, 𝛽2 nonlinear convection variable, stagnation parameter 𝐴, porosity 

parameter 𝑘𝑝
∗ , radiation parameter 𝑅, magnetic parameter 𝑀, Prandtl number 𝑃𝑟, Eckert number 

𝐸𝑐, thermal Heat generation parameter 𝑄𝑇, space-based exponential heat parameter 𝑄𝐸, 

Brownian motion parameter 𝑁𝑏,thermophoresis parameter 𝑁𝑡, Schmidt number 𝑆𝑐, chemical 

reaction 𝐾𝑐,𝑚 order of chemical reaction, Suction and Injection parameter 𝑆, Sherwood and 

Nusselt numbers, as well as the skin friction coefficient. Temperature, concentration and 

velocity profiles are all affected by these physical characteristics. 
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Table 5.1: Variation in −𝑅𝑒𝑥

1

2𝐶𝑓, 𝑅𝑒𝑥

−1

2 𝑁𝑢𝑥 and 𝑅𝑒𝑥

−1

2 𝑆ℎ𝑥 for Newtonian fluid with 

𝑆 = 0.5, 𝛽1 = 0.1, 𝛽2 = 0.1, 𝐾𝑐 = 0.1, 𝑃𝑟 = 0.7, 𝑅 = 0.1, 𝑄𝑇 = 0.2, 𝑄𝐸 = 0.2, 𝐸𝑐 = 0.2, 

𝑁𝑏 = 1.0, 𝑁𝑡 = 1.0, 𝑆𝑐 = 0.6,𝑚 = 2. 

𝑴 𝑵 𝑨 𝑲𝒑 𝝀 𝑵∗ −𝑹𝒆𝒙

𝟏
𝟐𝑪𝒇 𝑹𝒆𝒙

−𝟏
𝟐 𝑵𝒖𝒙 𝑹𝒆𝒙

−𝟏
𝟐 𝑺𝒉𝒙 

1.0 1.0 0.1 0.5 0.5 0.1 1.66564608 1.07872527 0.93059855 

2.0 1.0 0.1 0.5 0.5 0.1 1.90875542 1.01167559 0.92018953 

3.0 1.0 0.1 0.5 0.5 0.1 2.12462982 0.95302841 0.91608539 

1.0 2.0 0.1 0.5 0.5 0.1 2.40091331 1.64352878 1.27370957 

1.0 3.0 0.1 0.5 0.5 0.1 3.05272328 2.08397469 1.54877173 

1.0 1.0 0.2 0.5 0.5 0.1 1.53165058 1.12833212 0.98672424 

1.0 1.0 0.3 0.5 0.5 0.1 1.37639717 1.17497537 1.03575974 

1.0 1.0 0.1 1.0 0.5 0.1 1.79159182 1.05450143 0.91617348 

1.0 1.0 0.1 1.5 0.5 0.1 1.90941404 1.03186910 0.90426872 

1.0 1.0 0.1 0.5 1.0 0.1 1.44427662 1.12611214 0.96900473 

1.0 1.0 0.1 0.5 1.5 0.1 1.23477938 1.16410599 1.00097025 

1.0 1.0 0.1 0.5 0.5 1.5 1.64455506 1.08292012 0.93334738 

1.0 1.0 0.1 0.5 0.5 3.0 1.62208173 1.08732241 0.93624972 

Table 5.2: Variation in −Rex

1

2Cf, Rex

−1

2 Nux and  Rex

−1

2 Shx for Casson fluid with 

𝑆 = 0.5, 𝛽1 = 0.1, 𝛽2 = 0.1, 𝐾𝑐 = 0.1, 𝑃𝑟 = 0.7, 𝑅 = 0.1, 𝑄𝑇 = 0.2, 𝑄𝐸 = 0.2, 𝐸𝑐 = 0.2, 

𝑁𝑏 = 1.0, 𝑁𝑡 = 1.0, 𝑆𝑐 = 0.6,𝑚 = 2. 

𝑴 𝑵 𝑨 𝑲𝒑 𝝀 𝑵∗ −𝑹𝒆𝒙

𝟏
𝟐𝑪𝒇 𝑹𝒆𝒙

−𝟏
𝟐 𝑵𝒖𝒙 𝑹𝒆𝒙

−𝟏
𝟐 𝑺𝒉𝒙 

1.0 1.0 0.1 0.5 0.5 0.1 2.01993124 1.10836292 0.98577682 

2.0 1.0 0.1 0.5 0.5 0.1 2.31192891 1.04156179 0.97796808 

3.0 1.0 0.1 0.5 0.5 0.1 2.57212733 0.98205232 0.97582509 

1.0 2.0 0.1 0.5 0.5 0.1 2.85693628 1.69563672 1.37057386 

1.0 3.0 0.1 0.5 0.5 0.1 3.58504627 2.15656259 1.68149293 

1.0 1.0 0.2 0.5 0.5 0.1 1.85821478 1.15277191 1.03162474 

1.0 1.0 0.3 0.5 0.5 0.1 1.67146801 1.19517972 1.07183121 

1.0 1.0 0.1 1.0 0.5 0.1 2.17116542 1.08576081 0.97199746 

1.0 1.0 0.1 1.5 0.5 0.1 2.31291451 1.06441947 0.96046118 

1.0 1.0 0.1 0.5 1.0 0.1 1.77790597 1.14584033 1.01441317 

1.0 1.0 0.1 0.5 1.5 0.1 1.54707057 1.17701878 1.03894085 

1.0 1.0 0.1 0.5 0.5 1.5 1.99764978 1.11152496 0.98773001 

1.0 1.0 0.1 0.5 0.5 3.0 1.97388287 1.11485759 0.98979770 
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Table 5.3: Variation in −Rex

1

2Cf, Rex

−1

2 Nux and  Rex

−1

2 Shx for Newtonian fluid with 

𝑀 = 1.0, 𝑁,= 1.0, 𝐾𝑝 = 0.5, 𝜆 = 0.5, 𝑆 = 0.5, 𝛽1 = 0.1, 𝛽2 = 0.1, 𝐴 = 0.1, 𝐾𝑐 = 0.1, 

𝑄𝑇 = 0.2, 𝑄𝐸 , 𝑆𝑐 = 0.6,𝑚 = 2,𝑁∗ = 0.1. 

𝑷𝒓 𝑹 𝑬𝒄 𝑵𝒃 𝑵𝒕 −𝑹𝒆𝒙

𝟏
𝟐𝑪𝒇 𝑹𝒆𝒙

−𝟏
𝟐 𝑵𝒖𝒙 𝑹𝒆𝒙

−𝟏
𝟐 𝑺𝒉𝒙 

1.0 0.1 0.2 1.0 1.0 1.79999179 1.67815878 0.08841609 

1.3 0.1 0.2 1.0 1.0 1.82953957 1.86483452 -0.07540770 

0.7 0.2 0.2 1.0 1.0 1.6609628 1.14916972 0.9662006 

0.7 0.3 0.2 1.0 1.0 1.65672069 1.21503639 0.99744944 

0.7 0.1 1.0 1.0 1.0 1.65250162 0.72449670 1.20854555 

0.7 0.1 1.8 1.0 1.0 1.63941351 0.37604157 1.48141511 

0.7 0.1 0.2 0.5 1.0 1.66655062 1.19881900 0.21946354 

0.7 0.1 0.2 0.7 1.0 1.66706982 1.14877880 0.62675707 

0.7 0.1 0.2 1.0 0.5 1.67253005 1.13401919 1.17775945 

0.7 0.1 0.2 1.0 0.7 1.66972257 1.11121000 1.07458357 

Table 5.4: Variation in −Rex

1

2Cf, Rex

−1

2 Nux and  Rex

−1

2 Shx for Casson fluid with 

𝑀 = 1.0, 𝑁,= 1.0, 𝐾𝑝 = 0.5, 𝜆 = 0.5, 𝑆 = 0.5, 𝛽1 = 0.1, 𝛽2 = 0.1, 𝐴 = 0.1, 𝐾𝑐 = 0.1, 

𝑄𝑇 = 0.2, 𝑄𝐸 , 𝑆𝑐 = 0.6,𝑚 = 2,𝑁∗ = 0.1. 

𝑷𝒓 𝑹 𝑬𝒄 𝑵𝒃 𝑵𝒕 −𝑹𝒆𝒙

𝟏
𝟐𝑪𝒇 𝑹𝒆𝒙

−𝟏
𝟐 𝑵𝒖𝒙 𝑹𝒆𝒙

−𝟏
𝟐 𝑺𝒉𝒙 

1.0 0.1 0.2 1.0 1.0 2.20980181 1.67101011 0.25291622 

1.3 0.1 0.2 1.0 1.0 2.24976403 1.83872273 0.10995609 

0.7 0.2 0.2 1.0 1.0 2.01418898 1.18312225 1.01906597 

0.7 0.3 0.2 1.0 1.0 2.00893649 1.25301506 1.04847659 

0.7 0.1 1.0 1.0 1.0 1.99980599 0.70680757 1.29044266 

0.7 0.1 1.8 1.0 1.0 1.97977285 0.31285692 1.58863593 

0.7 0.1 0.2 0.5 1.0 2.02083025 1.23352663 0.27112607 

0.7 0.1 0.2 0.7 1.0 2.02152789 1.18145685 0.68068243 

0.7 0.1 0.2 1.0 0.5 2.02820977 1.16714430 1.23127333 

0.7 0.1 0.2 1.0 0.7 2.02484104 1.14287346 1.12860936 
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Table 5.5: Variation in −Rex

1

2Cf, Rex

−1

2 Nux and  Rex

−1

2 Shx for Newtonian fluid with 

𝑀 = 1.0, 𝑁 = 1.0, 𝑁𝑏 = 1.0, 𝑁𝑡 = 1.0, 𝐾𝑝 = 0.5, 𝜆 = 0.5, 𝑆 = 0.5, 𝛽1 = 0.1, 𝛽2 = 0.1, 

𝐴 = 0.1, 𝑁∗ = 0.1, 𝑅 = 0.1, 𝑃𝑟 = 0.7, 𝑄𝑇 = 0.2, 𝐸𝑐 = 0.2, 𝑄𝐸 = 0.2. 

𝑺𝒄 𝑲𝒄 𝒎 −𝑹𝒆𝒙

𝟏
𝟐𝑪𝒇 𝑹𝒆𝒙

−𝟏
𝟐 𝑵𝒖𝒙 𝑹𝒆𝒙

−𝟏
𝟐 𝑺𝒉𝒙 

0.4 0.1 2.0 1.66374739 1.13098994 0.49592353 

0.8 0.1 2.0 1.66722219 1.04168506 1.29907406 

0.6 0.5 2.0 1.66612834 1.06798307 1.03501403 

0.6 1.0 2.0 1.66663594 1.05687679 1.15019507 

0.6 0.1 1.0 1.66573806 1.07554319 0.94841245 

0.6 0.1 3.0 1.66561051 1.07994007 0.92267052 

Table 5.6: Variation in −Rex

1

2Cf, Rex

−1

2 Nux and  Rex

−1

2 Shx for Casson fluid with 

𝑀 = 1.0, 𝑁 = 1.0, 𝑁𝑏 = 1.0, 𝑁𝑡 = 1.0, 𝐾𝑝 = 0.5, 𝜆 = 0.5, 𝑆 = 0.5, 𝛽1 = 0.1, 𝛽2 = 0.1, 

𝐴 = 0.1, 𝑁∗ = 0.1, 𝑅 = 0.1, 𝑃𝑟 = 0.7, 𝑄𝑇 = 0.2, 𝐸𝑐 = 0.2, 𝑄𝐸 = 0.2. 

𝑺𝒄 𝑲𝒄 𝒎 −𝑹𝒆𝒙

𝟏
𝟐𝑪𝒇 𝑹𝒆𝒙

−𝟏
𝟐 𝑵𝒖𝒙 𝑹𝒆𝒙

−𝟏
𝟐 𝑺𝒉𝒙 

0.4 0.1 2.0 2.01737447 1.16238991 0.53922109 

0.8 0.1 2.0 2.02193582 1.07034325 1.36146917 

0.6 0.5 2.0 2.02047417 1.09847114 1.08360553 

0.6 1.0 2.0 2.02104936 1.08804463 1.19297172 

0.6 0.1 1.0 2.02005708 1.10542779 1.00232271 

0.6 0.1 3.0 2.01988911 1.10947697 0.97841084 

Tables 5.1 - 5.6 illustrate the impact of various physical parameters such as magnetic field, 

Stagnation point, porosity, exponential parameter, buoyancy force ratio, Thermophoresis and 

Brownian motion, radiation, Prandtl number, Eckert number, heat generation, Schmidt number, 

chemical reaction, suction and injection parameter on the skin friction coefficient, Nusselt 

number and Sherwood number for Newtonian fluid and Casson fluid respectively. The figs. 5.3 

- 5.36 are derived from the values presented in the tables. 
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Fig. 5.2 demonstrates the connection between M and the dimensionless velocity 

profile 𝑓′(𝜉).Typically, when 𝑀 increases, the Lorentz force increases, which causes molecular 

collisions to increase force and raise fluid temperature while lowering velocity at boundary 

layer. The square of magnetic field strength is directly proportional to the magnetic parameter 

𝑀, while velocity is inversely proportional to 𝑀. The effect of temperature increase is examined 

in fig. 5.3 together with the magnetic parameter 𝑀. An opposite force known as the Lorentz 

force is often brought about by a stronger magnetic parameter. Both the temperature profile and 

boundary layer viscosity increased because of this force. In contrast to Newtonian fluid, we saw 

that Casson fluid successfully causes the temperature profiles to rise. The behavior of 

concentration supply for increasing values of 𝑀 is shown in figure 5.4. It demonstrates that 

when 𝑀 values increase, concentration of fluid supply improves. Figure 5.5 shows impact of 

starching ratio 𝐴 for different variations on velocity profile 𝑓′(𝜉). The impact of stagnation 

points 𝐴 on the velocity field 𝑓′(𝜉) is discovered in figure 5.6 for both Newtonian and Casson 

fluid. Velocity increases in presence of 𝐴. The boundary layer thickness and velocity both rise 

for small values of 𝐴. The fact that the free stream velocity gradually grows and as a result, 

velocity also increases. The velocity rises, and the boundary layer thickness falls as 𝐴 gets 

larger. Figure 5.7 and figure 5.8 show the fluctuation in temperature and concentration caused 

by 𝐴.we observed that both are decreases. 

The figs. 5.9 - 5.11 demonstrate the influence of an exponential parameter on the skin 

friction coefficient, Nusselt number, and Sherwood number for both Newtonian fluid and 

Casson fluid. As the exponential parameter increases, the boundary layers of velocity, 

temperature, and concentration of the fluid flow decrease for both types of fluids. As a result, 

for both fluids, the exponential parameter grows while the velocity, temperature, and 

concentration drop. Fig. 5.12, In the boundary layer, it is seen that decreasing values of the 

porosity parameter 𝐾𝑝
∗ result in slower velocity. This is the consequence of the resistance due to 

porous medium. Additionally, figure illustrates how boundary layer thickness reduces for larger 

values of 𝐾𝑝
∗. 

Figs. 5.13 - 5.15 demonstrate the interaction of the suction parameter 𝑆 with the 

temperature and concentration profile. The graphs show that as 𝑆's mathematical value is 

increased, the fluid's velocity, temperature, and concentration profile all decrease. The fluid is 

closer to the surface because of the suction parameter. In fact, density differential in the flow 
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zone is exacerbated by greater values of 𝑆. The density is highly concentrated in the upper 

section and sparsely concentrated in the bottom. A drop in fluid velocity is seen because of this 

change in density, it decreases fluid flow between the top and bottom areas. Fig. 5.16 

demonstrate how the mixed convection variable λ affects the profile of velocity. The ratio of a 

fluid's buoyant to viscous forces at the boundary layer is referred to as the mixed convection 

variable. The velocity profile shows a gain in 𝜆 as it begins to rise, whereas the temperature 

profile shows a decrease. As the buoyant body force of the system, which acts normally to the 

wall, increases, the chemical concentration within the boundary layer decreases. 

Fig. 5.17 demonstrates how the Buoyancy force ratio 𝑁∗ affects the profile of velocity. 

The graph shows that when the Buoyancy force ratio rises, the concentration boundary layer 

thins but the momentum boundary layer thickens. Fig. 5.18 demonstrates the connection 

between 𝑃𝑟 and temperature profile. Since 𝑃𝑟 may be stated as a density to thermal diffusivity 

ratio, increasing 𝑃𝑟's values indicates that the fluid's density is rising while the thermal 

diffusivity is falling, which lowers the temperature. Fig. 5.19 examine how 𝑅 affects the flow 

of energy. The fluid's energy circulation is boosted by 𝑅's gradually growing values. As a result 

of the greater value of 𝑅, the fluid releases more heat energy and the distribution of energy get 

better. 

Fig. 5.20 displays the connection between 𝑄𝑇 and the fluid's temperature profile. 

Because the flow's heat source is not dependent on external heat. We investigated how the 

thermal heat source 𝑄𝑇 may be enhanced to lower the temperature. The temperature of the fluid 

steadily rises because of these actions. The effects of Space-based Heat Generation 𝑄𝐸 

parameters on temperature distribution are presented in figure 5.21. Temperature rose as a result 

of a greater value of 𝑄𝐸. 

Fig. 5.22 examines the effect of Eckert number 𝐸𝑐 on the fluid's temperature profile. 

Eckert number is described as a ratio of thermal energy to the kinetic energy of the fluid atom. 

The thermal boundary layer enlarges with increasing 𝐸𝑐.The increased thermal conductivity of 

the flow is what causes this process to happen. The dissipation grows as 𝐸𝑐 values rise and as a 

result, the fluid's internal energy grows as well. The fluid's temperature distribution is also 

improved by this change in internal energy. Rise in 𝐸𝑐 causes the concentration distribution to 
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widen, since the rising values of 𝐸𝑐 leads to an increase in the fluid's thermal energy. The link 

between 𝑁𝑏 and temperature profile is shown in fig. 5.23. As the levels of 𝑁𝑏 are steadily 

increased, the temperature profile falls. The mobility of fluid particles is often greatly increased 

by the amplification of 𝑁𝑏, it enhances the temperature distribution and increases the kinetic 

energy of the fluid particle. Impact of 𝑁𝑏 on concentration distribution is seen in fig. 5.24. The 

increased values of 𝑁𝑏 leads to a rise in the concentration distribution. 

Fig. 5.25 demonstrates the connection between 𝑁𝑡 and the fluid's temperature 

distribution. It is demonstrated that raising the numerical values of 𝑁𝑡 causes the temperature 

profile to rise. Physically, when 𝑁𝑡 values rise, the nanoparticles are pulled from hotter to cooler 

regions, raising the temperature profile of the nanofluid. Impact of 𝑁𝑡 on concentration 

distribution is seen in fig. 5.26. The increased values of 𝑁𝑡 lead to a rise in the concentration 

distribution. 

Fig. 5.27 examines how the fluid's concentration profile is affected by the Schmidt 

number 𝑆𝑐. The Schmidt number is the ratio of the molecular diffusion coefficients and 

kinematic viscosity. Since mass transfer improves as Schmidt number intensity increases, we 

looked at the influence of lowering on concentration profiles. Fig. 5.28 demonstrate the effect 

of 𝑘𝑐  on the concentration profile. The graph indicates that increased levels of 𝑘𝑐 accelerate the 

temperature distribution while decreasing the concentration profile.  Physically, as 𝑘𝑐 increases, 

the molecular diffusion decreases, lowering the concentration and lowering the thickness of the 

appropriate boundary layer. 

Fig. 5.29 demonstrate the order of chemical Reaction 𝑚 on the concentration profile. 

Due to rise in  𝑚, concentration profile rises. The fluid's velocity decreases as the numerical 

value 𝛽 is increased. This indicates that although increasing values of cause fluid viscosity to 

increase, decreasing values of cause the velocity profile of the nanofluid to drop. Furthermore, 

as 𝛽 approaches infinity, the current phenomena transform into Newtonian fluid. Increasing the 

value of 𝛽 gradually increases the temperature distribution of the fluid. The volume fraction of 

nanoparticles increases as 𝛽 is increased. 
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Fig. 5.2: Influence of 𝑀 on 𝑓′(𝜉). 

 

Fig. 5.3: Influence of 𝑀 on 𝜃(𝜉). 
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Fig. 5.4: Influence of 𝑀 on 𝜙(𝜉). 

 

Fig. 5.5: Stagnation point. 
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Fig. 5.6: Influence of 𝐴 on 𝑓′(𝜉). 

 

Fig. 5.7: Influence of 𝐴 on 𝜃(𝜉). 



72 

 

 

Fig. 5.8: Influence of 𝐴 on 𝜙(𝜉). 

 

Fig. 5.9: Influence of 𝑁 on 𝑓′(𝜉). 
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Fig. 5.10: Influence of 𝑁 on 𝜃(𝜉). 

 

Fig. 5.11: Influence of 𝑁 on 𝜙(𝜉). 
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Fig. 5.12: Influence of 𝐾𝑝 on 𝑓′(𝜉). 

 

Fig. 5.13: Influence of 𝑆 on 𝑓′(𝜉). 
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Fig. 5.14: Influence of 𝑆 on 𝜃(𝜉). 

 

Fig. 5.15: Influence of 𝑆 on 𝜙(𝜉). 
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Fig. 5.16: Influence of 𝜆 on 𝑓′(𝜉). 

 

Fig. 5.17: Influence of 𝑁∗ on 𝑓′(𝜉). 
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Fig. 5.18: Influence of 𝑃𝑟 on 𝜃(𝜉). 

 

Fig. 5.19: Influence of 𝑅 on 𝜃(𝜉). 
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Fig. 5.20: Influence of 𝑄𝑇 on 𝜃(𝜉). 

 

Fig. 5.21: Influence of 𝑄𝐸 on 𝜃(𝜉). 
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Fig. 5.22: Influence of 𝐸𝑐 on 𝜃(𝜉). 

 

Fig. 5.23: Influence of 𝑁𝑏 on 𝜃(𝜉). 
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Fig. 5.24: Influence of 𝑁𝑏 on 𝜙(𝜉). 

 

Fig. 5.25: Influence of 𝑁𝑡 on 𝜃(𝜉). 
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Fig. 5.26: Influence of 𝑁𝑡 on 𝜙(𝜉). 

 

Fig. 5.27: Influence of 𝑆𝑐 on 𝜙(𝜉). 
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Fig. 5.28: Influence of 𝐾𝑐 on 𝜙(𝜉). 

 

Fig. 5.29: Influence of 𝑚 on 𝜙(𝜉). 
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Table 5.7: Comparison of −(1 +
1

𝛽
) 𝑓′′(0) when 𝑆 = 0.5, 𝛽1 = 0, 𝛽2 = 0,𝐾𝑐 = 0.1, 

𝑃𝑟 = 0.7, 𝑅 = 0.1, 𝑄𝑇 = 0.2, 𝑄𝐸 = 0, 𝐸𝑐 = 0.2, 𝑁𝑏 = 1.0, 𝑁𝑡 = 1.0, 𝑆𝑐 = 0.6,𝑚 = 2, 

𝐴 = 0,𝐾𝑝 = 0, 𝜆 = 0,𝑁∗ = 0, 𝐺𝑐 = 0, 𝐺𝑟 = 0. 

𝑴 𝑵 (S. M. Ibrahim, 2020) Present work 

Newtonian fluid Casson fluid Newtonian fluid Casson fluid 

0.0 1.0 1.5403 1.8238 1.5403 1.8237 

0.5 1.0 1.7254 2.0509 1.7254 2.0509 

1.0 1.0 1.8883 2.2507 1.8883 2.2507 

0.5 1.0 1.7254 2.0509 1.7254 2.0509 

0.5 1.5 2.1202 2.4999 2.1202 2.4998 

0.5 2.0 2.4853 2.9185 2.4852 2.9185 

 



 

 

CHAPTER 6  

CONCLUSIONS 

In this thesis, we have examined influence of thermally radiative stagnation point flow 

of Casson nanofluid with magnetic field. The physical parameters of the 2D Casson nanofluid 

have been investigated i.e. exponential parameter 𝑁, stagnation parameter 𝐴, porosity parameter 

𝑘𝑝
∗ , radiation parameter 𝑅, magnetic parameter 𝑀, Prandtl number 𝑃𝑟, Eckert number 𝐸𝑐, 

thermal heat generation parameter 𝑄𝑇, space-based exponential heat parameter 𝑄𝐸, Brownian 

motion parameter 𝑁𝑏, thermophoresis parameter 𝑁𝑡, Scmidt number 𝑆𝑐, chemical reaction 𝐾𝑐, 

suction and injection parameter 𝑆. We derived a set of ODEs by applying the similarity 

transformation to the nonlinear PDEs of concentration, momentum and temperature. The 

present model has been combined with 𝑅𝐾4 to calculate numerical results using the shooting 

method. Using graphs and tables, it has been thoroughly explored how different acceptable 

physical characteristics affect the velocity, energy and concentration distribution. 

The main conclusion from the current work is outlined below. 

• As magnetic field values rose, the velocity profile decreased but temperature and 

concentration distribution rise. 

• Temperature distribution slows as the Prandtl number increases, whereas the 

concentration distribution accelerates. 

• The temperature field exhibits the same behavior as the temperature profile due to the 

thermophoresis parameter, because of which the temperature profile rises. 

• Increase in the exponential and heat source parameters improve the heat transfer rate. 

• Brownian motion raises both temperature and concentration in the flow domain due to 

increased thermal energy transmission. 

• Due to stagnation parameter ‘𝐴’, momentum boundary layer becomes thinner. 
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• Joule's heating has the effect of raising the temperature at all places. 

•  The rate of heat and mass transmission increase as 𝜆 and 𝑁∗increase. 

• By boosting the numerical value of Casson parameter, the fluid's velocity drops. 

• As chemical reaction parameter increases, concentration profile decreases. 

Future work 

The problem might possibly be expanded by considering the consideration of several 

fluid models such as Maxwell, Williamson, Burger, Jeffery and tangent hyperbolic nanofluid. 

Other effects such as nth-order chemical reaction, activation of energy, inclination magnetic 

field, viscous dissipation and soil particles can be used to investigate the situation. We may also 

solve the above-mentioned issue by employing several geometries such as a wedge, channel, 

cone and cylinder among others. 
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