

AN EMPIRICAL STUDY ABOUT POSITIVE

IMPLICATIONS OF REQUIREMENTS VOLATILITY

ON THE SOFTWARE ARCHITECTURE

 By:

 SUMAIRA ANWAR BAIG

NATIONAL UNIVERSITY OF MODERN LANGUAGES

ISLAMABAD

December, 2022

AN EMPIRICAL STUDY ABOUT POSITIVE IMPLICATIONS OF

REQUIREMENTS VOLATILITY ON THE SOFTWARE

ARCHITECTURE

By:

SUMAIRA ANWAR BAIG

BS in Computer Sciences, University of the Punjab, Lahore, 2013

A THESIS SUBMIT IN PARTIAL FULFILMENT OF

THE REQUIREMENT FOR THE DEGREE OF

MASTER OF SCIENCE

In Software Engineering

To

FACULTY OF SOFTWARE ENGINEERING & COMPUTER SCIENCES

NATIONAL UNIVERSITY OF MODERN LANGUAGES ISLAMABAD

© Sumaira Anwar Baig, 2022

ii

 THESIS AND DEFENSE APPROVAL FORM

The undersigned certify that they have read the following thesis, examined the defense, are satisfied

with overall exam performance, and recommend the thesis to the Faculty of Engineering and

Computer Sciences for acceptance.

Thesis Title: An Empirical study about the positive implications of Requirements Volatility on

the Software Architecture

Submitted by: Sumaira Anwar Baig Registration #: 18MSSE/Ibd/S19

Master of Science in Software Engineering

Degree Name in full

Software Engineering

Name of Discipline

Dr. Huma Hayat Khan

Name of Research Supervisor Signature of Research Supervisor

Dr. Basit Shahzad

Name of Dean (FE&CS) Signature of Dean (FE&CS)

Prof. Dr. Aamir Ijaz

Pro-Rector Academics Signature of Pro-Rector Academics

7
th

 December, 2022

Date

iii

AUTHOR’S DECLARATION

I Sumaira Anwar Baig

Daughter of Muhammad Anwar Baig

Registration # 18MSSE/Ibd/S19

Discipline Software Engineering

Candidate of Master of Science in Software Engineering (MSSE) at the National

University of Modern Languages do hereby declare that the thesis An Empirical study

about positive Implications of Requirements Volatility on the Software Architecture

submitted by me in partial fulfillment of MSSE degree, is my original work, and has not

been submitted or published earlier. I also solemnly declare that it shall not, in the future,

be submitted by me for obtaining any other degree from this or any other university or

institution. I also understand that if evidence of plagiarism is found in my

thesis/dissertation at any stage, even after the award of a degree, the work may be canceled

and the degree revoked.

Signature of Candidate

 Sumaira Anwar Baig
Name of Candidate

7th December, 2022

Date

iv

ABSTRACT

An Empirical study about the positive implications of Requirements Volatility on the

Software Architecture

 Requirement volatility is a fundamental activity that occurs throughout the software

development life cycle. But, nowadays, it is becoming a striking reason for software project

failures, such as software defects and resource management issues, especially in the context

of the software architecture. A software architecture that indicates the complete vision of the

upcoming system is one of the major areas that could be adversely affected by the

requirements volatility. This phenomenon indicated the close connection and equal worth of

both these twin peaks of the Software Development Life Cycle (SDLC) i.e. ‘requirement

volatility’ and ‘software architecture’. Moreover, modern software development models are

fragile, wherein, the software architectures must be designed flexibly to accommodate future

changes. However, the fragile nature of requirement volatility indicated their positive

activity, and nor does it means an uncontrolled state of existence. Nevertheless, it is a

challenging activity but it could be achieved through sound knowledge. For implementation,

this study adopted a systematic literature review to identify the list of factors related to the

software architecture which are also validated by the experts of the domain. In the end, an

industrial survey was conducted to propose the positive implications of identified factors on

software architecture. Accordingly, this study contributed a refined and validated list of 27

factors along with their positive implications. Moreover, this study revealed that

communication issues and dependencies are the main factors that are causing requirement

volatility and factors related to architecture i.e. traceability, design implementations,

documentation, and architectural complexity having major implications on the software

architecture. Accordingly, to better assist in the development process, the practitioners or

developers must have to consider these factors to deal with the upcoming changes more,

effectively.

v

TABLE OF CONTENTS

Chapter TITLE PAGE

 AUTHOR’S DECLARATION iii

 ABSTRACT iv

 LIST OF TABLES ix

 LIST OF FIGURES x

 LIST OF ABBREVIATIONS xi

 LIST OF APPENDICES xii

 ACKNOWLEDGEMENT xiii

 DEDICATION xiv

1 INTRODUCTION

1

 1.1 Overview

1

 1.2 Background of Research

1

 1.3 Research Problem

2

 1.4 Research Questions

2

 1.5 Research Objective

3

 1.6 Aim of the Research

3

 1.7 Scope of the Research

3

 1.8 Contribution of the Research

4

 1.9 Thesis Outline

4

 1.10 Summary of the Chapter 5

2 LITERATURE REVIEW

6

 2.1 Overview

6

 2.2 Definitions

6

 2.2.1 Requirement Volatility

6

 2.2.2 Software Architecture

7

 2.2.3 Relationship between Requirement Volatility and

Software Architecture

8

 2.2.4 Positive Implications of Requirement Volatility on the

Software Architecture

9

vi

 2.3 Preliminary Studies

9

 2.3.1 Representation of Existing Studies

15

 2.4 Summary of the Chapter

19

3 METHODOLOGY

20

 3.1 Introduction

20

 3.2 Systematic Literature Review

20

 3.2.1 Review Planning

21

 3.2.2 Review Conduction

26

 3.3 Grounded Theory

28

 3.4 Expert Review

29

 3.4.1 Expert Identification

29

 3.4.2 Selection Criteria

30

 3.4.3 Expert Selection

31

 3.4.4 Issue Familiarization

31

 3.4.5 Collection of responses

31

 3.5 Presentations of Results

31

 3.6 Industrial Survey

32

 3.6.1 Research Question and Research Objective

32

 3.6.2 Identification of Research Objective

33

 3.6.3 Identification & Characterization of Target Audience

33

 3.6.4 Designing of Sampling Plan

33

 3.6.5 Designing of Questionnaire

33

 3.6.6 Pilot Test Questionnaire

34

 3.6.7 Distribution of Questionnaire

34

 3.6.8 Analyzing the Final Results & Writing a Report

34

 3.7 Phases of Research Study

34

 3.8 Summary of the Chapter 36

4 REQUIREMENT VOLATILITY FACTORS RELATED TO

THE SOFTWARE ARCHITECTURE

37

 4.1 Introduction

37

 4.2 SLR Findings

37

 4.2.1 Distribution of Studies based on years

38

 4.2.2 Distribution on basis of Type of Research Studies

39

 4.2.3 Distribution of studies on the basis journal type

40

 4.2.4 Selected Conference 41

vii

 4.2.5 List of Journals

42

 4.2.6 Distribution of factors based on sub-factors/data units

43

 4.3 Findings from Grounded Theory

44

 4.4 Conduction of Expert Review

47

 4.4.1 Expert Evaluation and Suggestion Table 47

 4.5 Description of the Identified Factors

60

 4.5.1 Software Defects

60

 4.5.2 Resource Management

61

 4.5.3 Knowledge

61

 4.5.4 Communication Issues

61

 4.5.5 Dependencies

62

 4.5.6 Traceability

62

 4.5.7 Dynamic Business Environment

62

 4.5.8 Stakeholder

63

 4.5.9 Architecture

63

 4.5.10 SW Design and Design Implementation

63

 4.5.11 Organizational Leadership

64

 4.5.12 Adaption to Change

 64

 4.5.13 SQW Maintenance

65

 4.5.14 Artifacts

65

 4.5.15 Integration of Usage

65

 4.5.16 Trade-off

66

 4.5.17 Code

66

 4.5.18 Technical Debt.

66

 4.5.19 Human Behavior

67

 4.5.20 Team

67

 4.5.21 Integration of Linkage

67

 4.5.22 Documentation

68

 4.5.23 Architectural Complexity

68

 4.5.24 Requirement Volatility

68

 4.5.25 Quality Assurance

69

 4.5.26 Security

69

 4.5.27 Self-Healing Mechanism

69

 4.6 Summary of the Chapter

70

viii

5 INDUSTRIAL SURVEY

71

 5.1 Introduction

71

 5.2 Industrial Survey Findings

71

 5.2.1 Distribution of Respondent's Experiences based on

Software Development

72

 5.2.2 Distribution of companies based on the study

domain

73

 5.2.3 Distribution of responses based on the Scope of the

Company

73

 5.2.4 Distribution of companies based on the working

strength

74

 5.2.5 Distribution of companies based on SPI

Certifications

74

 5.2.6 Distribution of respondent firms based on the type

of development

75

 5.3 Results Analysis and Reporting

75

 5.4 Positive implications of Requirement Volatility Factors on the

SW Architecture

76

 5.4.1 Testing Results/Statistics

76

 5.4.2 Analysis of Survey

90

 5.4.3 Survey Results from Weightage Values

91

 5.5 Positive Implications of identified factors (from the top level

to bottom)

92

 5.6 Summary of the chapter

93

6 CONCLUSION AND FUTURE WORK

94

 6.1 Introduction

94

 6.2 Contribution of the Study

94

 6.3 Threats Validity

95

 6.4 Future Work

95

 6.5 Conclusion

95

REFERENCES

97

 Appendices A- I

104 -175

ix

 LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Preliminary Studies 10

3.1 Research Questions 22

3.2 Digital Data Sources 22

3.3 Identified Keywords 23

3.4 Search Strings 24

3.5 Study Inclusion Exclusion Criteria 25

3.6 Quality Assessment Criteria 26

3.7 The scale of the Quality Assessment Checklist 26

3.8 Study Selection Criteria 27

3.9 Data Extraction Form 28

3.10 Selection Criteria for Expert Review 30

3.11 Personal Detail of Evaluators 31

3.12 Research Question for the conduct of the Industrial Survey 32

3.13 Scale Defining the Level of Factors 34

4.1 Distribution of Research Studies Journals 41

4.2 Distribution of Studies Conferences 41

4.3 Distribution of Studies based on Journals 42

4.4 Distribution of Factors based on data units. 43

4.5 Example of Data Encoding 45

4.6 Example of Explicit/Implicit Removal 46

4.7 Expert Review Suggestion and Implementation 47

4.8 After the implementation of the Expert's suggestions the Final list of

factors along with their category type and sub-factors.

50

4.9 Tabulated representation of RV Factors related to the SW Architecture 55

5.1 Findings of the Survey 90

5.2 Survey Accepted/Rejected Values 91

5.3 Positive Implications of factors from top to bottom based on the

frequency

92

x

 LIST OF FIGURES

FIGURE NO. TITLE PAGE

3.1 Steps of Systematic Literature Review 21

3.2 Selection Strategies of Studies 28

3.3 Process of Expert Review 30

3.4 Steps for Survey Conduction 32

3.5 Flow Diagram of Research Study 35

4.1 Graph of included studies as per the publication year 38

4.2 Graph of Studies distribution based on the type 39

4.3 Graph of distribution of studies based on the journal type 40

5.1 Distribution of responders based on Experiences 72

5.2 Distribution of companies based on the study domain 73

5.3 Distribution of the company's responses based on the scope 73

5.4 Distribution of companies based on the working strength 74

5.5 Distribution of companies based on SPI certifications 74

5.6 Distribution of respondent firms based on the type of development 75

5.7 Frequency distribution against the factor Software Defects 77

5.8 Frequency distribution against the factor Resource Management 77

5.9 Frequency distribution against the factor Knowledge 78

5.10 Frequency distribution against the factor Communication Issues 78

5.11 Frequency distribution against the factor Dependencies 79

5.12 Frequency distribution against the factor Traceability 79

5.13 Frequency distribution against the factor Dynamic Business

Environment

80

5.14 Frequency distribution against the factor Stakeholder Synchronization 80

5.15 Frequency distribution against the factor Architecture 81

5.16 Frequency distribution against the factor Design Implementation 81

5.17 Frequency distribution against the factor of Organizational

Leadership

82

5.18 Frequency distribution against the factor Adaption to Change 82

5.19 Frequency distribution against the factor SQW Maintenance 83

5.20 Frequency distribution against the factor Artefacts 83

5.21 Frequency distribution against the factor Integration of Usage 84

5.22 Frequency distribution against the factor Trade-off 84

5.23 Frequency distribution against the factor Code 85

5.24 Frequency distribution against the factor Technical Debt. 85

5.25 Frequency distribution against the factor of Human Behavior 86

5.26 Frequency distribution against the factor Team 86

5.27 Frequency distribution against the factor Integration of Linkage 87

5.28 Frequency distribution against the factor Documentation 87

5.29 Frequency distribution against the factor of Architectural Complexity 88

5.30 Frequency distribution against the factor Requirement Volatility 88

5.31 Frequency distribution against the factor Quality Assurance 89

5.32 Frequency distribution against the factor Security 89

5.33 Frequency distribution against the factor self-healing mechanism 90

xi

 LIST OF ABBREVIATIONS

SDLC - Software Development Life Cycle

RV - Requirement Volatility

SW - Software

RQ - Research Question

SDP - Software Development Process

xii

 LIST OF APPENDICES

APPENDIX

TITLE PAGE

A The list of designed search strings for the conduct of SLR. 104

B Quality Assessment including distribution of studies and participants. 108

C The data Extractions Forms of the conducted SLR. 114

D Execution of Data Encoding Technique. 134

E Execution Of Implicit/Explicit Removal 147

F Expert Review Evaluation Form 150

G Survey Form 159

H The final list of Identified factors along with their categories 170

I List of included primary studies along with the paper IDs 173

xiii

ACKNOWLEDGEMENTS

 In the name of Allah, the most gracious and the most merciful. I would like to thank

Almighty Allah, Who gave me enough strength to accomplish my thesis work during the

COVID-19 pandemic.

 I would like to thank Dr. Huma Hayat Khan, who put her maximum potential,

valuable constant supervision, encouragement, and constructive suggestions to meet this

destination. She is the single one who made me stand again like a pillar of strength in my

worst situation. I would also like to thank my research pioneer Dr. Muhammad Nauman

Malik, who introduced me to the research methodologies and put his generous expenditure of

time and profound interest to familiarize me with the research platform. Moreover, I would

like to express my deepest gratitude to the worthy Dean Dr. Basit Shahzad, who has been my

best instructor at this esteemed university, and the rest of the Faculty members of the

Software Engineering Department who put their maximum potential into making bright

future of all of us.

 Moreover, I would like to show my gratitude to all of the Experts, who evaluated and

validated my research work especially Dr. JayaLetchmi A/P T. Sambantha Moorthy for her

valuable suggestions and recommendations. I would like to express my heartfelt feelings to

my Ex-Boss, Dr. Faheem Jahangir Khan, (Senior Research Economist, PIDE), who taught

me about the actual worth of ‘writing’. I would also express my gratitude to my current Boss

Mr. Nazir Ahmad, (Joint Secretary, Cabinet Division), who taught me how to bear the

pressure in a challenging environment.

 For all whom I did not mention but I shall not neglect their significant contribution,

thanks for everything.

xiv

DEDICATION

 Alhamdulillah… All gratitude be to Almighty Allah for molding me into the person I

am today and allowing me to realize my ambition…I dedicate this thesis work to my

Supervisor, namely ‘Dr. Huma Hayat Khan’ for guiding me and giving me her precious

time whenever, I needed it the most during Research work, Co-Supervisor, ‘Dr. Muhammad

Nauman Malik’ and last but not least my father ‘Muhammad Anwar Baig (Late)’, who

raised me like THE STRONGEST AND PROUDEST DAUGHTER but left us at a very early

age of life.

 I extend this dedication to my beloved ‘Mama’, an iron lady who raised me in the

dark time with the light of hope and patience. Today, I am achieving my goals just because of

her endless guidance, love, and moral support. Moreover, I am thankful to all of my lovely

and gorgeous sisters namely Humaira, Iqra, and Dr. Nimra for their valuable support, love,

care, and huge respect.

CHAPTER 1

INTRODUCTION

1.1 Overview

 This chapter contains an introduction to the twin peaks of the Software

Development Life Cycle (SDLC) i.e. Requirements volatility and Software Architecture.

Further, this chapter highlighted the strong relationship between these twin peaks and more

crucially focused on the positive implications of requirements volatility and their impact on

the software architecture. The background of this chapter discussed the existing research work

in the area of the conducted research. Accordingly, the research problem, aim of the research,

scope of research, and research questions, are also mentioned here. Moreover, to consider the

contributions of the existing research work, this chapter highlighted the existing research

gaps, and their limitations and further intimated the basic core purpose or need to conduct this

research.

1.2 Background of Research

 Requirement volatility is a fundamental activity which requires throughout the

software development life cycle (SDLC). It could be raised from the very initial step of

elicitation to the end phase of maintenance. Accordingly, requirements are needed to be

added, deleted, and modified throughout the rest of the development phases [1][2]. Therefore,

it is a challenging activity to adopt, however, it is not necessarily a negative activity, and nor

does it means an uncontrolled state of existence. Exiting research studies indicated their

positive correlation with the accomplishment of software development projects [3]. In general

different terms requirement change, requirement uncertainty, and requirement instability is

commonly associated with the same phenomenon of requirement volatility. However, as the

name depicts, the rest of these associated terms have negative implications or illustrate an

uncontrolled state of existence. Therefore, this study focuses on the term requirements

volatility due to its fragile nature, where, it deals with the change during the rest of the

development phases and illustrates the control state of existence. Accordingly, it has valuable

worth towards the successful accomplishment of the development projects and also has

positive worth towards success [1][4].

2

On the other hand, software architecture shows the complete picture of the software

system or product. The core purpose of a software architecture foundation is to provide a

complete vision of the upcoming product which is going to develop [5].

However, software architecture itself is complex because it contains various diagrams,

use cases, semantics, etc. Therefore, there is a dire need to consider competent software

architects to efficiently handle these architecture-related matters. It is pertinent to mention

here that the progress of the architecture development is not dependent on the decision of the

software architects. The involvement of different stakeholders, their consent, or their vision

about the end product also plays a vital role. In short, to better get clear objectives about the

behavior of the upcoming product and its environment, there is another essential need to

consider the opinions and sound consents of their stakeholders [1][5].

1.3 Research Problem

 As requirement volatility is a fundamental activity of the software development

life cycle, therefore, it is an essential need to consider the factors that arise during the

development process. As a result, the upcoming products would be able to reach the desired

and satisfactory level of end-products, in the middle of the volatility [1]. Despite this,

requirement volatility is treated as a single phenomenon; however, in reality, different factors

can lead to different practical implications and their impact on the development process of

software architecture. Therefore, there is a dire need to consider those implications that occur

during the development process in different ways. Moreover, to the best of my knowledge,

there is less research conducted that intimated their positive implications. Although, several

studies have been conducted that came up with different results and motivations.

This existing research gap motivated me to discover all possible factors i.e. external

and internal to overlook the requirements volatility on the SW architecture. Hence, the prior

studies mentioned the need to conduct this empirical study on the positive implications of

requirements volatility on software architecture [1][5][9].

1.4 Research questions

 This research study comprises the following listed below research questions.

 RQ1: What are the external and internal factors of requirement volatility

 related to software architecture?

 RQ2: What are the positive implications of requirements volatility factors on

 the software architecture?

3

1.5 Research Objective

 To answer the above-mentioned research questions. The research objectives of

this study are listed below:

 Objective 1: To identify the possible internal and external factors of

 requirement volatility related to the software architecture from practitioners

 and the existing literature.

 Objective 2: The objective of RQ2 is to seek the positive implications of

 identified factors of requirement volatility on software architecture.

1.6 Aim of the Research

 This study aims to achieve two main goals. Where the first goal is to study the

phenomenon of requirement volatility in respect of the software architecture. The second

objective is to seek the sound consent of the industrial practitioners by surveying a list of

factors. Besides this, to accomplish the first objective this study aims to conduct a systematic

literature review (SLR). As a result, the findings of SLR are analyzed by conducting the

Expert Review. For implementation, this study applied the technique of grounded theory i.e.

data encoding. After removal of explicit and implicit removal, this study got a refined list of

factors. This identified list of factors was validated by the experts of the domain in phase two

(02) of Expert Review conduction. In the end, to meet the second objective, this study aims to

identify the identified list of factors by conducting an industrial survey and more curiously

focused on part of their positive implications of factors on software architecture.

1.7 Scope of the Research

 The scope of this study is to identify all possible factors of requirement volatility

regarding the software architecture. For this systematic literature review is conducted. For the

implementation of this, the primary studies are selected for the period of the last ten years i.e.

from 2010 to 2020. At which point, high-quality research papers i.e. journals, mature

conferences, and accepted manuscripts are selected. Moreover, this study more curiously

focused on the positive implications of the requirement volatility in respect of the software

architecture. For evaluation purposes of the SLR results, the expert review was conducted,

where, the domain of the experts are selected having experience of at least five years and must

be specialized in their domain. On the other hand, to conduct the survey, the industrial people

are selected having experience of at least two years in the field of Requirement Engineering or

have worked in the domain of the twin's peaks of the software development life cycle i.e.

Requirement volatility and Software Architecture.

4

1.8 Contribution of the Research

 This conducted study contributes a list of all possible factors i.e. Internal and

External factors of requirement volatility regarding the software architecture. The identified

list of factors is vetted through the implementation of the grounded theory technique. As a

result, the list is passed out for the removal of data consistency and redundancy. After the

execution of the grounded theory, the list of identified factors is refined through the conduct

of the expert review. Where, the experts of the domain validated the identified list of factors

in three different categories, i.e. internal factors, external factors, and both, respectively.

Moreover, the experts also verified their naming conventions for certain factors and suggested

their classification against each identified factor. In the end, the industrial survey was

conducted which indicated their results and proposed more solutions in a more focused way

towards the conduct of this research.

1.9 Thesis Outline

 This thesis outline is comprised in numbers of six (06) chapters. Where, the first

Chapter contains the overview along with the research background, the research problem,

research questions, research objectives, the aim of the research, the scope of the research, and

the contribution. In the end, this chapter also contains the outline of the thesis. Chapter two

(02) contains the overview and complete information about the requirement volatility, and

software architecture and more specifically elaborated on the positive implications of

requirement volatility concerning the software architecture. Besides this, this chapter contains

part of the literature review and the detail of existing research studies related to the domain of

this study. Chapter three (03) contains the complete detail of adopted methodologies against

the designed research questions. Where, the systematic literature review (SLR), grounded

theory, expert review, and survey were conducted on account of research methodologies.

Accordingly, chapter four (04) contains the material related to the findings of the systematic

literature review including grounded theory and expert review. Where chapter five (05)

contains the results of the industrial survey. In the end, chapter six (06) discussed the

conclusions and contributions of this conduct of study along with future work and threats of

validity.

5

1.10 Summary of the Chapter

 This summary contains the complete representation of chapter one. Which, the

research gap is highlighted along with the background of the study. Moreover, this chapter

addressed the purpose of this conduct along with the research questions. Accordingly,

reported the research objective, scope of the study, and contributions. In the end, shows the

complete representation of the thesis.

6

CHAPTER 2

LITERATURE REVIEW

2.1 Overview

This chapter contains the existing studies ‘literature review’ work in terms of

requirements volatility and its impact on software architecture. This chapter also highlighted

the strong relationship of these twins peaks i.e. ‘requirements volatility’ and ‘software

architecture’ in the field of software engineering. Accordingly, this chapter discussed the core

purpose or need to carry out this research. Moreover, the existing studies are reported hereby

along with their contributions and gaps in the research.

2.2 Definitions

2.2.1 Requirement Volatility

The requirements volatility is a fundamental activity which requires throughout the

software development life cycle (SDLC). The nature of change is an integral element that

triggers during the rest of the phases of software development. Accordingly, ‘Nurmuliani et al

define requirements volatility as the tendency of requirements to change over time. While

requirements changes occurred as a result of the natural evolution of the user needs over time,

the actions of stakeholders in the various stages of the requirements engineering process

including elicitation, analysis, validation, and management can also contribute to

requirements volatility [1].

Prior studies reported on the two main strategies to consider the requirements

volatility i.e. ‘defensive strategy’ and ‘reactive strategy’. While the defensive strategy deals

with the avoid change or reduce change mechanism. On the other hand, reactive strategy deals

with all upcoming changes. Deals with the changes during the development phase and

consider a flexible platform for requirement volatility. In the same context, the approach of

this study is to consider the reactive strategy and indicates its positive worth towards changing

environment [3].

Moreover, it is important to consider the changes as early as possible during the

software development life cycle (SDLC) because the upcoming system artifacts are deploying

in a dynamic environment. As a result, the requirements are changed continuously and new

requirements are triggered, rapidly. Therefore, to reduce the financial implications of new

7

requirements there is a necessity to consider the requirements as a priority [10]. In the same

context, the existing studies also reported that change is an essential and important factor in

the software development life cycle and software systems must respond to these upcoming

changes, evolving requirements, dynamic platforms, and other requirements volatility

pressures [11].

Besides this, the requirement change is a risk-oriented activity, wherein, adopting or

predicting the change is a challenging task. Therefore, to consider the changes developers

must have to consider the challenges related to the economic or financial impact first then its

technical and managerial complexity [12]. Accordingly, selecting the appropriate developer is

crucial for getting better results toward change requests in terms of their economic feasibility

and time constraints. In the same context, the literature also reported that change requests

could be treated as software artifacts that could consider software defects through managing

its repository. Where, the repository plays a vital role in software maintenance, predicting

changes, and provision of a common platform for communication and coordination purposes

among the stakeholders. This activity is also known as change request triage, wherein, the

most appropriate and expert developer is selected to consider the upcoming changes, to handle

the matter efficiently [13].

2.2.2 Software Architecture

Software architecture is the backbone of the software systems that are going to build.

It is, therefore, a software architecture that provides the complete vision of the upcoming

software system including diagrams, use cases, and semantics [1]. During the designing

process, software architecture plays a vital role in the implementation of source code [14].

Software Architecture has been established for almost forty years in the field of Software

Engineering. Inherently, Software Architecture is complex and its manufacturing does not

depend on the software architect only. It must involve the different stakeholder's concerns, as

well. As a result, the complexity of software architecture increased towards its development

[1].

Moreover, the existing empirical studies reported that nowadays software architecture

is built based on experiences or intuitions rather than different designing tools and techniques.

However, at the initial step, the software architects are always considered as the core persons

or have primary concerns for designing the basic structure of the upcoming system

architecture. Later on, the active involvement of different stakeholders' concerns such as

product managers, developers, and customers is highly considered to fulfill the requirements

and to meet the satisfaction level of the end product [1].

8

Besides this, software architecture is the structure of structures of the upcoming

system which contains the software components, and properties of their components and

indicates their relationship with each other [15]. Accordingly, software architecture is

considered the central element of the software development life cycle. Therefore, it is used for

communication and documentation purposes for reasoning about their important properties

towards designing, as a blueprint for the upcoming system manufacturing [16].

Software Architecture design implementation is another important element that needed

to be addressed. There is an essential need to keep a record of the architecture design

rationale, because, the knowledge behind the architectural design decision could be

challenging during the software system maintenance and its evolution process [17]. Moreover,

the architectural technical debt issues or financial implications also needed to consider most

stickily. Because this can adversely influence the development process due to sub-optimal

architecture decisions and trade-offs. However, technical debt matters related to coding issues

could be detected during the development process by adopting various tools [1] [18].

2.2.3 Relationship between Requirement Volatility and Software

Architecture

The prior studies indicated a strong relationship between requirements volatility and

software architecture. These both terms are considered as ‘Twin Peaks’ of the software

development life cycle and have equal worth towards the development process [1]. In forging

this, the requirement engineering process and software architecture are closely interlinked, In

what respect; implementing decisions regarding one could also affect the other [5].

Nevertheless, the traditional waterfall model considered the requirements at the preliminary

step and freezes the requirements in this stage before moving the design implementations. As

a result, it is becoming more difficult to consider the change architecture decisions. However,

in reality, the changes could be occurring in both areas of the twin peaks of the SDLC.

Therefore, modern iterative development processes such as agile implementations are

considering the changes throughout the software development life cycle. This is indicated by

their strong relationship [1] [5].

Moreover, this strong relationship indicated about requirement volatility huge impact

on the software development life cycle. Where the requirements could adversely affect the

software architecture releases and have a strong impact on project schedule, cost, or budget-

related matters and their performances [19]. Hence, there is a dire need to consider these twin

peaks of the software development life cycle (SDLC) because these terms having equally

worth while for the building of the upcoming software system [5]. As a result, the twin peaks

9

model emphasizes iteratively carrying out the implications of requirements volatility and

software architecture, concurrently, to meet the multiple benefits such as rapid changes and

uncovering new requirements, etc. [1]. Accordingly, in the modern research community

requirements, volatility effects on the software architecture are becoming an important

element to consider and the existing literature also reported that there is an essential need to

scientifically explore this phenomenon [20].

2.2.4 Positive Implications of Requirement Volatility on the Software

Architecture

Prior studies and empirical studies discussed the worth of the requirement engineering

process and their strong and positive correlation with the accomplishment of software

projects. As evidenced, by the chaos report of the Standish group, four out of ten main success

factors are interlinked with the requirement engineering process i.e. user involvement, clear

business objectives, minimized scope, and core business needs [3]. Existing studies reported

more positive than negative experiences about the requirement engineering process, in which

the practitioners intimated that integration of usage, decision knowledge, accountability, and

traceability have major roles. In the end, concluded that partially it is difficult to cope with

requirements volatility or change, but it can be achieved through the adoption of integration of

usage and decision knowledge, positively [21].

Prior empirical studies reported that structural dependencies within code are an upright

strategy to identify the change impact set, positively. Where, a change impact set is a group of

entities, that have a fragile attitude toward changing behavior, to ensure a consistent and

complete change request. Researchers perceived that developers must know the decision to

analysis that from where to start the implementations of upcoming changes, even if they may

not know all the changes. As a result, revealed that a better understanding of data-sharing

dependencies, in addition, has a huge positive impact on the actual change impact set [17].

2.3 Preliminary Studies

This section contains the complete information of prior studies related to the study

domain and in terms of studies purpose, used methodologies along with their contributions

and limitations. In the same context, this part represented the existing study's significant

importance in the field of requirement engineering and software architecture. Where, most of

the studies indicated the lacking area of results and proposed success factors towards

implementation of requirement volatility or requirement change management process which

are not extensively addressed, especially in the context of the industry. Moreover, the two

studies came up with the same conclusion and intimated that there is still a gap exist in

10

understanding the positive impact of requirement volatility on software architecture. Further,

intimated that there is an essential need to conduct an empirical investigation on the positive

implications of requirement volatility on software architecture and proposed that it will be an

authentic platform to conduct better contributed future research [1][5].

Table 2.1 Preliminary Studies

Sr No. Author/Year Domain Methodology Contribution Limitation/Future

Work

1. Amjad

AbuHassan,

2020

Requirement

Engineering

Systematic

Literature

Review

This study proposed

code smell

deduction

techniques for

fixing the changes

or modifications

during the software

design

implementations.

There is an

essential need to

validate the

findings of the

conducted SLR at

the industrial level

or from the

practitioners to

bring more

attention in the

future.

2. Halima

Sadia, Syed

Qamar

Abbas, and

Mohammad

Faisal, 2020

Requirement

Engineering,

Volatile

Requirements,

and

Prioritization

Conducted

case study

and empirical

analysis

This case study

proposed a

requirements

prioritization

technique to handle

the requirements

volatility.

The case study

contains a total

number of eighty

(80) volatile

requirements and

the functionality of

fifty-four (54) was

validated through

the proposed

solution. But, there

is a need to handle

the requirements

volatility in more

generic ways and

to identify the

actual cause of its

11

occurrence.

3. Sandun

Dasanayake,

2019

Requirements

Management,

Requirements

Volatility, and

Software

Architecture

Conducted an

industrial

case study.

Identified the

factors that

contribute towards

the requirements

volatility and their

implications on

software

architecture with

mitigation factors.

The results of the

conducted case

study were sticker

to a European

software company.

There is a gap

found to

understand the

positive

implications of

requirements

volatility on

software

architecture at the

industry end.

4. Arif Ali

Khan,

Muhammad

Azeem

Akbar, 2019

Requirement

Engineering

and

Requirement

Change

Management

Conducted

SLR and

survey

Developed

taxonomies of the

identified motivator

based on the

framework proposed

by Ramasubbu and

PMBOK.

Classified

identified

motivators were

twenty-five in

number and sticker

to the factor of

organization size

only. There is a

gap found to

identify the

motivators based

on the wide scope

and other human

resources to

validate the

empirical findings.

5. Jan Ole

Johanssen,

Requirement

Engineering

Conducted

semi-

Proposed the two

main factors having

The conducted

interview was

12

2019 structured

interview

positive experiences

towards continuous

software

engineering.

limited to 24

practitioners only.

However, their

attitude towards

implementation

has positive

attitude.

6. Muhammad

Azeem

Akbar, 2019

Requirement

Change

Management

Conducted

SLR using

Kitchenham

and Charters

This study proposed

a framework for the

GSD to improve the

RCM.

The results are

based on SLR,

which was not

validated by the

industry. They plan

to conduct QS with

practitioners in the

future, to

investigate the

success factors that

have positive

impacts on RCM

in GSD.

7. Xiaoyu Liu,

2018

Requirement

Engineering

Empirical

Investigation

This study proposed

a tool namely CHIP

to predict the

software's actual

change impact set.

The proposed tool

has limitations that

may be overcome

by adopting the F-

2 score by

comparing the

predictor’s

dependency graph

and evolutionary

coupling in the

future.

8. Sanja

Aaramaa,

2017

Requirement

Management

and Software

Architecture

Conducted an

Exploratory

case study.

This study identified

the challenges that

requirements

volatility constituted

The result of this

case study needed

implementation of

findings in

13

 in software

architecture.

different sizes and

into the different

domains to get the

validation of

identified

challenges. Then,

better solutions

could get to refine

the list of

challenges posed

by the requirement

volatility in

software

architecture.

9. Mauricio

Pena and

Ricardo

Valerdi, 2014

Requirement

Volatility,

System

Engineering,

and

Requirement

Engineering

Conducted

Survey; in

five

workshops

and

summarize

the

requirement

volatility into

five

observations

categories

This study,

summarize the

requirement

volatility into five

observation

categories and

proposed a Model to

estimate the impact

of requirement

volatility on System

Engineering.

Results of

workshop

discussions and

surveys can be

used to develop a

better framework

with objectives to

improve the

economic

implications of

requirements

volatility on

system engineering

efforts.

10. Andrea

Janes, Tadas

Remencius,

Alberto

Sillitti and

Giancarlo

Succi

Requirement

Engineering

and

Requirement

Management

Conducted

Interviews

through a

questionnaire

This study

concluded with

some factors that

indicated some

potential areas to

improve the RE

process on account

This study

emphasized one of

the parts of the

Requirement

definition process

i.e. ‘defensive

strategies’ only.

14

of defensive

strategies to reduce

or avoid changes.

As a result, improve

customer

satisfaction.

There is still a gap

that exists to focus

on another part of

the requirement

definition process

i.e. ’reactive

strategy’ to address

the requirement

volatility towards

implementation of

flexible software

solutions which

may require

anticipation

capabilities.

11. Michael W.

Grenn, 2013

Requirement

Engineering

and System

Engineering

Conducted

Simulation

Experiment

This study,

introduced the

Requirement

entropy framework

to evaluate the

upcoming

requirements and

for estimating the

requirement

engineering effort.

The results of the

simulation are

computer-based

and may need to

evaluate through

empirical

investigation or a

case study to

reveal more

generic results

against the

upcoming

requirements and

the practical utility

of the proposed

model and its

effectiveness.

12. M. P. Singh,

Rajnish

Requirement

Engineering

Conducted

Exploratory

This study reported

on the requirements

The results were

based on the

15

Vyas, 2012

and Change

Management

Review volatility and its

impact on project

development

phases.

exploratory

discussion there is

a need to conduct a

case study or

empirical

investigation to get

the validation and

need to identify the

positive impactions

of results (if any).

As shown in Table 1. There are numerous studies conducted on requirements volatility

and software architecture. Although they have significantly discussed the twin peaks of the

software development life cycle i.e. Requirement Volatility and software architecture.

However, none of them identified the positive implications of requirements volatility on the

software architecture. This is more specifically mentioned by the researchers [1] [5] [19].

Hence, prior studies visibly intimated the need for this conduct of a study on the positive

implications of requirements volatility on software architecture [1] [5] [17] [21].

2.3.1 Representation of Existing Studies

This section contains the reported studies description in terms of the study purpose,

used methodologies along with their contribution and future work. Amjad Abu Hassan, 2020

[22], discussed that software smell indicated the software codes and design changes related

issues. Identifying these kinds of issues is a challenging task. The author further intimated the

different smell detection techniques at the code level during the design implementations. For

this author carried out a systematic literature review (SLR) to identify the primary studies

related to the phenomenon of code smell deduction during software design and coding. As a

result, the author proposed different code smell deduction techniques for adopting the

changing demands and different concerns of the stakeholders in terms of fixing emerging

bugs, adding new functionality or changes, and deleting some old ones. The contributions of

this study provide more attention to the research community to consider the several

opportunities to consider future research in terms of software development.

Halima Sadia, 2020 [6], reported on the usability of the volatile requirements to

improve the software development life cycle on account of prioritization and intimated the

importance of requirements volatility. To meet customer satisfaction, the authors considered

16

the requirements volatility at each step and further intimated to consider each change with

prioritization towards the provision of successful project development. In this context, authors

proposed prioritization techniques to adopt the volatile requirements using fuzzy logic. The

authors discussed prioritizing each raised requirements volatility. But, there is still a gap that

exists to identify that what are the actual cause of requirements volatility towards

implementation of the proposed requirement prioritization technique, in more generic ways, to

handle its occurrence.

Sandun Dasanayake, 2019 [1], reported that requirements volatility is a major cause of

project failures on account of cost overrun, project delays, and huge defect density issues. In

the same context, the author further reported on the threat of software architecture, which

interprets the complete vision of software products. The authors highlighted the factors that

become the cause of requirements volatility and further highlighted inadequate architecture

documentation, incomplete design rationale, and complexity as the major implications of

requirements volatility on software architecture. The author discussed that there is a dire need

to handle contributed factors of requirements volatility to mitigate its implications and for the

provision of healthy software architecture process development.

Arif Ali Khan, 2019 [2], reported on the adoption of high-quality and low-cost

products, which were strongly associated with challenges of requirements change

management. They highlighted the severe threat of requirements change, on account of top

priority challenges, in the field of global software development. The authors discussed the

results of different identified motivators and highlighted the result which was correlated to the

requirements of change management. In forging this, they introduce a framework for tracking

those challenges, which were found significant for the success and evolution of software

development firms.

Jan Ole Johanssen, 2019 [21], reported on continuous software engineering and

intimated about the unexploited areas to consider the utilization of usage and decision

knowledge towards software development. For this, the author conducted semi-structured

interviews with 24 practitioners from different 17 companies. In this context, the practitioners

reported more positive than negative experiences. As a result, the study proposed the

validation of two main factors i.e. integration of usage and decision knowledge into

continuous software engineering, and intimated that partially it is difficult to adopt but it has a

positive attitude towards changes or adoption in continuous software engineering.

Muhammad Azim Akbar, 2019 [4], reported on the challenges faced by global

software development firms that were strongly related to requirement change management. In

17

the same context, authors identified thirty challenges that were further classified in the domain

of client and vendor end. The core purpose of the author was to get a sound vision of the

requirements to change the process and its challenges at both ends of software development

firms. Authors intimated that there are fewer studies exist, that investigate the factors that

have positive impacts on the requirement change management process. They further

highlighted that there is a dire need to evaluate industrial investigation for getting the sound

implications of requirements to change practices, which is important for the progress of

software development organizations.

Xiaoyu Liu, 2018 [17] discussed the structural dependencies within code and reported

on its worth in predicting the requirement change impact set towards implementation of the

requirements volatility. In some respect, the results indicated that a better understanding of

data dependencies instead of calling the dependencies greatly improves the change impact set.

For this author proposed a new improved tool namely CHIP to predict the software's actual

change impact set. The execution of this proposed tool intimated novel extensions to reduce

the false positives and suggested that developers must be aware from the initial changes that

from where to start the changes in the source code. This approach has been evaluated

empirically on the four large-scale open-source systems. The author contributed that

demonstration on the data sharing dependencies having a sound impact on the software's

actual impact set predictions as compared to call dependencies.

Sanja Aaramaa, 2017 [5], discussed the relationship between SW architecture design

and requirements volatility and intimated about less research work in this domain. For this,

the authors conducted an exploratory case study to report how requirements volatility affects

the software architecture design. The results of this study intimated that requirements

uncertainty and dynamic business environment-related factors are the root cause of

requirements Volatility. The authors identified the challenges of requirements volatility that

constitute software architecture design at worst, especially, in the context of scheduling and

architectural technical debt. The authors discussed the possible mitigations factors and further

intimated about the strongly influenced factors of requirements volatility on software

architecture. In the end, this study also highlighted that there is an essential need to fill the gap

that what are the factors needed to identify towards mitigate the volatility risks and intimated

its higher industrial relevance, for future research purposes.

Mauricio Pena, 2014 [7], reported on the causes of Requirements Volatility and its

impacts on System Engineering toward dynamic environment over the system development

life cycle. The core objective of this study was to improve the competency of the system

18

analyst to positively accommodate the requirements volatility. The authors proposed a model

to better quantify the impact of requirements volatility and on account of the results identified

the five observations that summarize the key activities of requirements volatility. Authors

intimated that project organizational, technical and contextual are the baseline factors that

have a higher influence on the rise of requirements volatility, due to poor understanding of the

required system and customer needs on account of their first observations. The authors

discussed their results and recommendation with an intimation that fewer considerations of

requirements volatility could increase the higher requirement change management issues

during transitions towards the software development life cycle. In forgoing this, they

intimated that volatility has strongly influenced system engineering efforts and it could

increase the functional size of the project. As result, major re-designing work could enhance.

The authors highlighted that impact of requirements volatility varies through the adoption of

changes that are dependent on added, deleted, and modified. For future considerations, the

authors highlighted that there is an essential need to work for the improvement of the

proposed model for the provision of better economic implications of requirements volatility

on system engineering efforts.

Andrea Janes, 2013, discussed the two main strategies that deal with the changes in the

requirements i.e. defensive strategy and reactive strategy, respectively. The study reported

some factors that can be adopted to reduce or avoid changes e.g. through using an effective

requirements definition strategy and indicated one of the main reactive strategies to address

the requirement volatility to produce flexible software solutions. This study concluded with

proposed factors having capabilities to handle the defensive strategies and presented some

solutions to implement the flexible solutions, recommended generating the special clauses for

requirement changes, and suggested adopting a well-defined change request procedure, to

better assist towards changing in the project.

Michael W. Green, 2013 [8], discussed information quality to address the system

engineering process. They reported that requirements are the core part of system engineering

at the technical end of designing, implementation, and integration. They further reported that

both are the core concept of Software Engineering. The authors introduced a requirements

entropy framework for information quality. They intimated that information must require

refreshing till the end state of the project and the end state could be getting only when it

contained the maximum nomenclature of quality attributes as per the demanded end state.

They proposed that the impact of addition, deletion, and modification could be measured

through raised inconsistency against the information.

19

The results of this study suggested that the requirement entropy framework is a robust

method to evaluate the upcoming requirements and for estimating the requirements

engineering effort for system development programs. M.p. Singh, and Rajnish Vyas, 2012 [9],

discussed the requirements volatility and also reported on the causes of it. The author

emphasized the impact of requirements volatility on account of project schedule, cost,

performance, Quality, and Maintenance. This study was a sticker to report the aspects of

requirements volatility and intimated that exploring the positive implications of requirements

volatility is a good platform for future research.

2.4 Summary of the Chapter

This chapter reported on the existing literature related to the twin peaks of the software

development life cycle (SDLC) i.e. ‘Requirement Volatility’ and ‘Software Architecture’.

Further, reported their strong relationship during the software development process. Besides

this, this chapter also contains the complete representation of existing studies in descriptive

and as well as in tabulated form. Where, most of the prior studies reported on requirement

volatility and software architecture, in terms of their success factors, prioritization techniques,

considerations at the initial phase of development, and adoption through the software

development phase. This chapter more clearly reported the gap in the study, as none of them

identified the positive implications of requirements volatility on the software architecture. A

further report on the gap, in light of the existing literature work, is more specifically

mentioned by the other researcher. In the end, this chapter visibly intimated the core purpose

of this conduct of a study on the positive implications of requirements volatility on software

architecture.

20

CHAPTER 3

METHODOLOGY

3.1 Introduction

 The second chapter intimated about the part of this study conducted literature

review that was carried out to highlight the existing gap in the field of requirement

engineering and further highlighted the twin peaks of the software development life cycle

(SDLC) i.e. Requirement Volatility and Software Architecture. Whereas, the existing

literature more curiously focused on the positive implications of requirement volatility and

their impact on the software architecture. Moreover, this chapter contains complete detail in

all aspects of the adopted set of methodologies in terms to carry out this research.

3.1.1 Overview

As mentioned earlier, this chapter indicates the part of the conducted research

methodology. Where all the sets of adopted research methodologies and chosen designs were

elaborated. To proceed, the most reliable, familiar, and well-established protocols are used on

account of research methodologies. Besides this, a ‘Systematic Literature Review’ (SLR) is

conducted, to identify the factors of the twin's peaks of the SDLC i.e. requirement volatility

and SW architecture. As a result, at the preliminary stage, the collected information visibly

has some redundancy and inconsistency. To rectify this, a technique of Implicit and explicit

removal has been chosen. For implementation, the grounded theory technique namely data

encoding was used. After execution, a refined list of factors is identified. To avoid biases

these identified factors were passed through the second phase of the research methodology i.e.

‘Expert Review’. Wherein, generated factors were validated and evaluated by the Experts in

the domain. In the end, the final validated and evaluated a list of factors was passed through

the next phase i.e. ‘Industrial Survey’ for obtaining better results from the practitioners or

industrial people.

3.2 Systematic Literature Review

 For conducting research, a well-addressed, familiar, and extensively used protocol

namely Systematic Literature Review (SLR) is conducted. Which comprises three different

phases i.e. ‘Review Planning’, ‘Review Conduction’, and ‘Results Reporting’, respectively.

For implementation, this study implemented the guidelines of Kitchenham [23]. The core

purpose of this conduct of SLR is to identify the factors of the twin peaks of the software

21

development life cycle i.e. Requirement volatility and software architecture. In the same

context, each adopted step of systematic literature review (SLR) is manifest below:

3.3.1 Review Planning:

 This is the very first step of Systematic Literature Review which intimates about the

need of conduction of this study. Whereby, the research questions are generated and area of

the research more curiously focused. This part of SLR also intimates about the adopted

protocols. Besides this, sources of data extraction i.e. databases, identification of keywords,

generated strings for data extraction purpose form the chosen databases, their inclusion and

exclusion criteria are modify, for getting better results and fruitful literature material.

3.3.1.1 Background:

 The core purpose of conducting this study is to identify the key concerns of the twin

peaks of software development life cycle i.e. Requirement Volatility and software

architecture. Accordingly, this part is design to identify the external internal factors of the

requirement volatility on Software Architecture.

3.2.1 Review Planning

Review planning is the first phase of Systematic Literature Review (SLR), where, the

planning strategies are initiated to conduct the research.

3.2.1.1 Research Goal

 This study being piloted has a specific goal, at which point, the core purpose of

this conduct is to identify all possible factors of requirement volatility on software

architecture. Accordingly, the primary goal of this study is to identify the internal and external

factors of requirement volatility related to the SW architecture.

Figure 3.1 Steps of Systematic Literature Review

Phase 1

Review Planning

Reseacrh Goal and
identification of
reseacrh questions

Identification of the

 keywords

 Identification of the

 sources

 Identification of the
Inclsuion and

Exclusion Criteria

Identify the data

 extraction strategy

Phase 2

Review Conduction

Identification of

research

Selection of

 Studies

Study Quality

 Assesment

Data Extraction

and monitoring

Data Synthesis

Phase 3

Results Reporting

SYSTEMATIC LITERATURE REVIEW

Presentation of

findings

Of

22

3.2.1.2 Research Questions

 To meet the goal of this study, hereby, the two research questions are developed

for the smooth conduct of the Systematic Literature Review (SLR). In the same context, the

complete detail of the research questions and their rationale are tabulated below:

Table 3.1 Research Questions

3.2.1.3 Strategy

 As the name depicts, this part intimated the study adopted strategy. Where the

resources are chosen for retrieval of primary studies through generated research terms or

keywords.

3.2.1.4 Resources

 To retrieve the data or primary studies on the electronic medium different resources

are used, where, the majority of the considered studies are journals articles, accepted

manuscripts, mature conferences, and special issue papers. In the same context, the literature

related to the requirement engineering process, software engineering, and computer sciences

are considered to achieve the goal. Whereas, books and simple printed articles are not chosen

to retrieve the study material. Accordingly, the list of databases on account of chosen

resources is tabulated below:

Table 3.2: Digital Data Sources

ID Research Question Rationales

RQ1 What are the external and internal

factors of Requirement Volatility

related to the Software

Architecture?

This research question would be able to

identify all possible factors of

Requirement Volatility related to

Software Architecture from practitioners

and the existing literature, in terms of

their three different categories i.e.

external, internal, and both.

RQ2 What are the positive implications

of Requirement volatility factors

on the software architecture?

This research question aims to seek the

positive implications of the identified list

of factors specifically regarding the

software architecture.

Electronic database URL

IEEE https://ieeexplore.ieee.org/Xplore

Willey https://onlinelibrary.wiley.com

Science Direct https://www.sciencedirect.com

ACM https://dl.acm.org

https://ieeexplore.ieee.org/Xplore
https://onlinelibrary.wiley.com/
https://www.sciencedirect.com/
https://dl.acm.org/

23

3.2.1.5 Search Terms

 As mentioned above, for extraction or retrieval purpose of data the search queries

are designed, here. For implementation, the mechanism of search query generation is listed

below:

 At first instance, the most striking words of this study are considered on account of the

core keywords that are three in number i.e. Requirement, Volatility, and software

architecture, respectively.

 In the second step, similar words or synonyms are generated against the derived core

keywords. As a result, this study finds similar words i.e. thirteen (13), fifteen (15), and

six (06), respectively against the derived words. As a result, collectively, in numbers

thirty-four (34) similar words are listed.

 In the last step, the most appropriate and vetted synonyms are considered which are

four (04), five (05), and four (04) against these derived words, respectively. As a

result, collectively, in numbers thirteen (13), the most striking or appropriate keywords

are considered for making the search strings. Accordingly, the search terms are

tabulated on the upcoming page:

Table 3.3 Identified Keywords

Sr No. Keyword Synonyms Considered Synonyms

1. Requirement Demand Demand

Condition Condition

Essential Essential

Need Need

Precondition

Specification

Stipulation

Fulfillment

Imperative

Provision

Prerequisite

Necessity

Needful

Total 13 Nos. 04 Nos.

Sr No. Keyword Synonyms Considered Synonyms

2. Volatility Change Change

Changeable Changeability

Fluctuating Uncertainty

Fickle Unstable

Inconsistent Inconsistent

Mutable

Uncertain

Unstable

24

Unsettle

Unstable

Unsteady

Capricious

Unpredictable

Unreliable

Untrustworthy

Total 15 Nos. 05 Nos.

Sr No. Keyword Synonyms Considered Synonyms

3. SW Architecture SW Design SW Design

SW Structure SW Structure

SW Construction SW Construction

SW Building SW Building

SW Planning

SW Architecture

Total 06 Nos. 04 Nos.

Grand Total 34 Nos. 13 Nos.

To proceed, the selected keywords are used simultaneously along with the rest of the

identified keywords via using the Boolean operator. As a result, the one hundred and fifty

(150) in numbers generic search strings are derived for execution or retrieval purposes of the

study material from the selected resources. Accordingly, the derived list of search queries is

tabulated below:

Table 3.4: Search Strings

Moreover, the table of complete search strings has been attached in the Appendix

section shown as Appendix-A.

String # Search String

Attp#1 (((Requirement) AND volatility) AND “Software architecture”)

Attp# 2 (((Requirement) AND volatility) AND “Software design”)

Attp#3 (((Requirement) AND volatility) AND “Software structure”)

Attp#4 (((Requirement) AND volatility) AND “Software construction”)

Attp#5 (((Requirement) AND volatility) AND “Software building”)

.

.

.

.

Attp#56 (((Demand) AND inconsistent) AND “Software architecture”)

.

.

.

.

Attp#78 (((Condition) AND uncertainty) AND “Software structure”)

.

.

.

.

Attp#129 (((Need) AND change) AND “Software construction”)

.

.

.

.

Attp#141 (((Need) AND unstable) AND “Software architecture”)

.

.

.

.

Attp#150 (((Need) AND inconsistent) AND “Software building”)

25

3.2.1.6 Selection Criteria

 For the selection of the research studies, the quality papers are selected from the

four different databases i.e. IEEE, Willey Online Library, ACM Digital Library, and Science

Direct. Moreover, for the smooth conduct of a Systematic Literature Review (SLR), the

published material between the years 2010 to 2020 timeframe are selected. Accordingly, the

majority of the selected study's journal articles, accepted manuscripts, mature conferences,

and special issue papers. In the same context, the complete detail of inclusion and exclusion

criteria is tabulated below:

Table 3.5: Study Inclusion Exclusion Criteria

Inclusion Criteria Exclusion Criteria

Study material related to the domain of

Requirement Engineering selected.

Whereby, the studies on the topic of

requirement volatility and software

architecture, published within the time

frame of the last ten years i.e. 2010 to

2020 are considered.

The material published earlier or before the

stated timeframe i.e. from the year 2010 is not

included.

Published journal articles, mature

conferences (started from the 15
th

 onward),

manuscripts, reviews, and special issue

papers.

Books, tutorials, panel discussions, editorials,

proceedings, unaccepted papers, and

unauthentic material is not included.

The majority of the studies discussed the

twin peaks of the software development

life cycle i.e. Requirement volatility and

software architecture and their factors.

Moreover, those studies more curiously

focused on their positive aspects.

The studies with the other domain, specific

knowledge, and applications are not included.

Studies published in the English language. Studies published in other than the English

language.

3.2.1.7 Study Selection Procedure

 The systematic literature review is a time taking activity. For the accomplishment

of this, different three stages of the process and further series of steps have to implement. In

26

the same context, this study adopted the guidelines of Kitchenham [23], for the smooth

conduct of the SLR. As far as the concern about the study selection criteria, firstly fixed the

timeframe and the studies of the last ten years 2010 to 2020 are selected. During the selection

of the studies, the most relevant and stickier titles, and keywords are retrieved. Moreover,

considered the inclusion and exclusion criteria and applied filter. In the end, the final

reviewed studies are selected as shown.

3.2.2 Review Conduction

This is the second phase of the Systematic Literature Review (SLR) and plays a vital

role in refining the study material through performing the quality assessment. Besides this,

indicates the complete vision of selected material in numbers and categorized all of them in

terms of different attributes.

3.2.2.1 Study Quality Assessment checklist and procedure

To avoid biases, this step plays a major role in conducting the process of quality

assessment and during conduct more refined the considered studies. For implementation, this

study adopted the pre-defined questions of the guideline of kitchenham [23]. The respondents

and participants have to answer these questions against each study for selection purposes.

Accordingly, assigned them a certain scale against each question, as shown in the table. For

this, studies are circulated among the respondents, participants, and candidates for the smooth

conduct of the process of quality assessment. As a result, studies are selected on behalf of

these respondents or participants.

Table 3.6: Quality Assessment Criteria

Sr No. Quality Assessment Question

1. Are the aims clearly stated?

2. Is the finding Credible and important?

3. Are the prediction techniques used clearly described and their selection is justified?

4. Is the knowledge or understanding been extended by the research?

5. Is the diversity of perspective and context been explored?

6. Are the links between data, interpretation, and conclusions clear?

7. Does the detail/ depth/ complexity/of the data is conveyed?

As mentioned earlier, the scale of quality assessment checklist adapted from the

guidelines of the Kitchenham [23], is tabulated below:

Table 3.7: Scale of Quality Assessment Checklist

Answer Score

Yes 1

Partially 0.5

No 0

27

Moreover, the completed detail of this conduct of quality assessment activity is

attached herewith in Appendix-B. In forgoing this, the selected material is tabulated below,

which comprises the different attributes i.e. databases, found studies, titles & keywords,

Abstracts, repeated studies, quality assessment, and final reviewed selection. Wherein, the

attributes of the database indicate the selected data sources and the very next attribute of

found studies indicated the found studies against each respective database. Besides this, the

attribute of title and keywords indicates all those studies which were stickier to the identified

keywords and title of the study. In forgoing this, the attribute of the Abstract indicates about

all of the studies have similarities to the research gap of this study. Besides this, for removal

of redundancy, the attribute of repeated studies indicated all those studies that have already

been considered and repeated here more than one time. Moreover, the attribute of Quality

Assessment indicated the core activity of SLR, at which point, the founded studies are refined

by the various respondents and participants, individually. In the end, the final reviewed and

vetted studies are selected for smoothly conducting this research.

Table 3.8: Study Selection Criteria

The search strings are applied to four different digital libraries i.e. IEEE, Wiley Online

Library, science direct, and ACM digital libraries. At the first level of extraction, 1455 studies

were found based on title and keywords. In the second step, 810 repeated studies are included

only once. In the third step, 410 studies are selected in respect of the Abstract and conclusion.

To consider the inclusion and exclusion criteria, the quality assessment is performed on 174

studies. As a result, in numbers of 83 studies are selected on account of the final selected

studies. Accordingly, the following upcoming flow chart represents the complete vision of the

adopted procedure for the selection of studies.

Sr.

No.

Database Found

studies

Title

&

Keywords

Repeated

studies

Abstract

+

Conclusion

Quality

Assessment

Final

Selected

study

1. IEEE 10,765 220 20 142 54 23

2. Wiley Online

Library

21,058 524 363 132 35 19

3. Science Direct 41,532 529 268 128 62 33

4. ACM Digital

Library

5,344 182 159 23 23 08

Total 78,699 1,455 810 425 174 83

28

Figure 3.2 Selection strategies of studies

3.2.2.2 Data Extraction Strategy and Synthesis of Extracted Data

To extract and synthesize the data the extraction form was designed for presenting the

complete detail of selected studies and retrieved information in a tabulated form as attached

herewith, in Appendix-C. Wherein, the data extraction form is comprised of seven (07)

different entities along with their respective information, as tabulated below:

Table 3.9: Data Extraction Form

3.3 Grounded Theory

To establish a theory, an inductive and comparative technique was adopted namely

‘Grounded Theory. This provides the complete platform for gathering qualitative data. Then,

synthesize and analyze the data for making a meaningful theory. Besides this, it is highlighted

Entities Respective Data

Title

Paper ID

Type

Publisher

QA Score

Answer to RQ1

Status

29

that Barney G. Glaser and Anslem L. Strauss developed the grounded theory for analyzing

qualitative data. Wherein, the data encoding and general concept of (codes) are used for the

extraction purpose of the data. In the same context, this technique aims to retrieve refined and

unbiased data from the selected primary studies. Hence, for implementation of this, the data

encoding technique of grounded theory is applied to the selected primary studies for the

extraction purpose of the refine list of factors. Accordingly, the complete detail of

implementation is placed in the forthcoming chapter 4. Moreover, to see the complete

execution of the process, in terms of the data encoding technique, the explicit and implicit

removal see Appendix-D and Appendix-E, respectively.

3.4 Expert Review

To consider the results of grounded theory, there is an essential need to conduct an

expert review against the identified list of factors, for validation purposes. Accordingly, the

expert review was conducted, whereas, the identified list of requirement volatility factors on

SW architecture was evaluated by the experts in the domain of Requirement Engineering. As

a result, the findings of this conduct of Systematic Literature review (SLR) were validated by

the experts/scholars in the field. Accordingly, the following strategies were adopted to

conduct the expert review.

3.4.1 Expert Identification

This is the very first and the most important step of the expert review. In which, the

experts of the domain were selected for validation purposes of the work. For onward

implementation, the basic competency of this step is to identify the field experts which have

sound knowledge related to this study domain and have experience. In the same context, the

identified experts validate that work, such as the evaluation of identified the list of factors in

terms of different categories, for checking the purpose of their naming convention or

classification. In forgoing this, here Figure No.3.3 represents the complete vision of the

process of expert review.

30

Figure 3.3 Process of Expert Review

3.4.2 Selection Criteria

To conduct the smooth exercise of expert review, the expert of the domain needed to

select for the review purpose of the work. Hereby, the complete selection criteria in terms of

their work experiences and expertise are tabulated below:

Table No. 3.10 Selection Criteria for Expert Review

Required Experience Required Expertise

Having experience of a minimum of 10 years

to a maximum of 20 years.

Having expertise in the domain of the

Requirement Engineering or specialist.

Having experience of a minimum of 10 years

to a maximum of 20 years.

Having expertise in the domain of Software

Architecture or specialist.

Idetify
Experts

Select
Criteria

Select
Expert

Familarize
the issues

Collect
Feedback

Present
Results

EXPERT REVIEW

31

Here, the table of the selection criteria for expert review indicated about the reviewer

(s) expertise must be specialized in the domain of requirement engineering and software

architecture. Accordingly, selected evaluators must have a maximum experience of 10-20

years at the ends of industry or academia.

3.4.3 Expert Selection

Here, the experts are selected as per the selection criteria, a total in numbers of six

experts was approached during this part. As a result, this study got responses from four (04)

different experts in the domain. Accordingly, to validate the research study, it is necessary to

review the work by a minimum of 1 to 4 experts for validation purposes. Therefore, this study

fulfills the basic criteria of expert selection.

3.4.4 Issue Familiarization

To proceed, there is necessary to familiarize the selected reviewer(s) with the research

problem, research purpose, and data collection for the validation purpose of the study.

Moreover, it is quite a challenging task, to sum up, stuff in the design expert evaluation form,

as well. Here, the willing experts are familiar with this stuff related to the study.

3.4.5 Collection of responses

The core purpose of this step is to get responses from worthy experts in the domain.

Accordingly, the collected responses are placed at the end of Appendix-F.

3.5 Presentation of Results

After getting the sound consent of the worthy reviewer (s) the results are presented in

the tabulated form. Where the results are placed i.e. final list of identified factors of

requirement volatility related to the SW architecture along with their categories placed here in

the forthcoming chapter 4. The mentioned categories are categorized where these factors are

being a lie, in terms of ‘Internal’, ‘External’, and ‘Both’. Moreover, the complete detail of the

worthy experts in terms of their respective organizations and designations is also tabulated,

here.

Table 3.11 Personal Detail of Evaluators

Expert No. Organization’s Name Designation

Evaluator No. 1 National University of Modern Languages

(NUML), Islamabad.

Dean FE&CS/ Associate

Professor

Evaluator No. 2 University of Technology, Malaysia. Assistant Professor/IT

Officer

Evaluator No. 3 University of Manchester, England. Associate Professor

Evaluator No. 4 University of Vienna, Austria. Assistant Professor

32

3.6 Industrial Survey

To meet the RQ2, here, the industrial survey was conducted. Whereby, the primary

goal of this method is to get the sound consent of the practitioners about the identified list of

requirement volatility factors and ensure their positive implications on the Software

Architecture. For implementation, the most popular protocol is used hereby proposed by

Mark Kasuinic [24]. This is the widely used guideline to survey the field of Software

Engineering. Besides this, Figure 3.4 illustrates the complete vision of the steps carried out to

conduct the survey.

Figure 3.4 Steps for Survey Conduction

3.6.1 Research Question and Research Objective

Table 3.12 Research Question for Conduct of Industrial Survey

ID Research Question Rationales

RQ2 What are the positive implications of

requirements volatility factors on the

software architecture?

This research question aims to indicate the

positive implications of an identified list of

factors specifically regarding software

architecture.

1. Identify
Research
objectives

2. Identify and
Characterize

Target Audiance

3. Design
Sampling Plan

4. Design and
write

Questionnaire

5. Pilot Test
Questionnaire

6. Distribute the
Questionnaire

7. Analyze
results and write

report

33

3.6.2 Identification of Research Objective

This is the very first step of the survey. Where the basic competency is to identify the

research goals and objectives. In the same context, the purpose of this conduct of survey is to

propose the positive implications of requirements volatility factors on the software

architecture.

3.6.3 Identification & Characterization of Target Audience

This is the second step of a survey which is comprised of two activities. Whereas, in

the very first activity is to identify the respondents. Moreover, this is a more challenging task

to identify the target audience who could understand the research questions and acknowledge

the research terminologies. Here, the audiences are selected based on their designations,

geography, demography, and their experiences. Who has worked on the twin peaks of the

software development life cycle (SDLC), specifically in the domain of Requirement

Engineering and Software Architecture? After the audience is selected, the second step is to

analyze the audience and characterize the intended respondent. To get better results, here, a

web-based questionnaire was conducted. Accordingly, for the smooth conduct of the survey,

the industry practitioners are selected having more than two (02) years of experience in the

study domain.

3.6.4 Designing of Sampling Plan

This step indicates the sample size of the respondents participating in the survey.

Besides this also intimates about requires responses and how much the sample size is enough

for responses. Here, the industrial practitioners are selected on account of the selected sample

populations who have worked in the domain of Requirement Engineering and Software

Architecture. As a result, the random sampling strategy is selected, and the sample size of 91

people from the software industry. In forgoing this, the sample size is calculated by using

Cochran‘s formula for sample collection.

3.6.5 Designing of Questionnaire

To facilitate the respondents, here, in this step questionnaire is designed. For smooth

designing, the basic necessity is to keep in mind the research objectives. In the first instance,

internally the survey questions are proposed and then transformed into the shape of a

questionnaire. As a result, the questionnaire design is comprised of two sections. Whereas,

section one contains the demographic information of the participants in terms of their

designations, locations, industry types, and this study-related completed projects, etc. While

34

section two contains the complete detail regarding the list of identified factors to get the

positive implications of requirements volatility on software architecture based on a pre-

defined scale, as tabulated below:

Table 3.13 Scale defining the level of factors

Scale Score

Strongly Agree 1

Agree 2

Neutral 3

Disagree 4

Strongly Disagree 5

In light of the above, the prepared questionnaire is placed herewith in Appendix-G.

3.6.6 Pilot Test Questionnaire

To get authentic responses from the targeted audience, here, in this step, the prepared

questionnaire test through the conduct of a small-scale simulation. The core purpose of this

exercise is to remove the bugs from the design questionnaire.

3.6.7 Distribution of Questionnaire

The designed and tested questionnaire was distributed to the selected audience for

getting the responses. At the preliminary stage, the survey was distributed via email and

LinkedIn Corporation. Moreover, to get more rapid responses, the IT parks of

Islamabad/Rawalpindi are visited for getting the sound consent of the industrial practitioners.

3.6.8 Analyzing the Final Results & Writing a Report

Once the responses are collected, the findings are presented, here. Accordingly, the

appropriate method was used to represent the results. Besides this, the findings of the

conducted survey could also be reported in a written form, where, the solutions and

recommendations are made based on the results. In the same context, the detail is represented

in the forthcoming chapter 5. Accordingly, the complete survey form along with the identified

factors is also placed herewith, in Appendix-G.

3.7 Phases of Research Study

This part represents the complete vision of this study in aspects of all activities that

have been carried out to conduct this research. It is pertinent to mention here that the study is

based on the two research questions. Where the first objective of this study is to identify a list

of requirements volatility factors and their impact on the software architecture by the conduct

of a Systematic Literature Review (SLR). On the other hand, the second objective of this

35

study is to represent the positive implications of requirements volatility factors on Software

Architecture by the conduct of an industrial survey. Accordingly, Figure 3.5 represents the

complete vision of this conduct of the study and their carried phases in the shape of the flow

diagram.

Figure 3.5 Flow Diagram of Research Study

36

The flow diagram of the research study represented the flow of this conduct of research study.

Whereby, for the accomplishment of the RQ1 and to meet the first objective of this study, a

Systematic Literature Review (SLR) [23] is conducted, which is based on three different

phases ‘Review Planning’, ‘Review Conduction’ and ‘Results Reporting’, respectively. As a

result, this study obtained the list of factors. Then, the duplication removal is performed on

the list o factors. Moreover, to refine the list of identified factors, the Grounded Theory was

implemented through a data encoding technique. During this phase, different extractions of

constructs are generated to get the refined list of factors along with the data units, then, an

activity of implicit explicit removal is conducted. After the successful execution of the

implicit explicit removal, this study gets the final list of factors. As the result, Expert Review

is conducted for the validation purpose of the identified list of factors. Where, the factor is

defined into three different categories i.e. ‘external’, ‘internal’, and both. After the successful

implementation of the Expert Review, this study find the validated list of factors and

accomplished the first objective and RQ1 of this study. To meet the second objective of this

study and accomplishment of RQ2, an industrial survey is conducted. The core purpose of this

conduct of industrial survey empirically investigates the positive implications of requirement

volatility factors on the software architecture, from the practitioners or industry people. As a

result, this study proposed the positive implications of requirements volatility factors on the

software architecture and contributed their part through this conduct of the study.

3.8 Summary of the Chapter

This chapter contains complete detail in terms of adopted methodologies during this

conduct of research study. Where, the Systematic Literature Review (SLR), is conducted for

the identification of the requirement volatility factors on the software architecture and

validated through the conduct of an Expert Review. Accordingly, an industrial survey is

conducted for getting the positive implications of these identified factors on the software

architecture. In the end, the flow diagram of the research study is represented

diagrammatically.

37

CHAPTER 4

REQUIREMENTS VOLATILITY FACTORS RELATED TO

THE SOFTWARE ARCHITECTURE

4.1 Introduction

This chapter contains the complete information related to the findings of this research

study design that has been carried out to achieve the research goals. This study is based on

the two research questions, which depict the aim of this study. To meet the research

objectives, the finding of the systematic literature review is reported here along with the

identified list of factors. Then, identified factors are modified by the implementation of the

grounded theory. Accordingly, the grounded theory generated meaningful constructs by

adopting the data encoding technique. In the end, the results of these constructs are validated

by the experts in the domain through the conduct of Expert Review. As a result, the refined

list of factors is placed in the form of a final list of factors along with their sub-factors or data

units. After the accomplishment of this final list of factors, an industrial survey is conducted

to propose the positive implications of requirements volatility on the software architecture.

4.2 SLR Findings

This section reported the findings of the conducted Systematic Literature Review

(SLR). The core purpose of this conduct of SLR is to accomplish the research question one

i.e. RQ1. Where the objective of RQ1 is to identify the requirements volatility factors related

to the software architecture. In the same context, the complete detail of the SLR findings in

terms of the distribution of studies based on years, and distribution of the studies as per their

nomenclature i.e. Journals and conferences are represented. Moreover, the details of the

names of the journals and conferences are also represented.

38

4.2.1 Distribution of Studies based on years

Figure 4.1 Graph of included studies as per the publications year

The above graph represents the included studies as per the publication years. In the

same context, the inclusion criteria of this conduct of SLR are the time frame from the year

2010 to 2020. Here, the x-axis of the graph represents the publication years and the y-axis

represents the number of included studies. This studies graph contains the data of four digital

resources i.e. IEEE Xplore, Willey Online Library, Science Direct, and ACM digital library,

respectively. Whereby, the blue color represents the studies of IEEE, the Red color represents

the studies of Wiley studies, the green color represents the studies of science direct, and the

purple color represents the studies of ACM. This graph also represents the individual rank of

each data base on account of their selected studies. Therefore, it is highlighted that in the year

2010, one (01) study is published in IEEE, five (05) studies are published in Science direct,

and one (1) was published in ACM. However, this year no relevant studies published in the

Willey. In forgoing this, here the five (05) studies are published in IEEE, two (02) published

in the Willey, four (04) published in Science Direct, and one (01) published in the ACM.

Accordingly, a total number of twenty-three (23) studies were published in the IEEE, nineteen

(19) published in the Willey Online Library, thirty-three (33) published in the science direct,

and eight (08) published in the ACM. Therefore, this study collectively included eighty-three

(83) numbers of studies on part of this thesis work.

1

5
4

2
1 1 1

4

0 1
3

23

0
2

0
2

3
4

1 0
2 2

3

19

5
4

6

1
3

4
3

2
4

1 0

33

1 1 0 1
2

0 0 0 1 0
2

8

0

5

10

15

20

25

30

35

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Total

IEEE Xplore

Willey Online Library

Scince Direct

ACM Digital Library

39

4.2.2 Distribution on basis of Type of Research Studies

Figure 4.2: Graph of studies distribution based on the type

This graph represents the distribution of research studies based on the type of studies.

At this point, the x-axis indicated the type of studies against all selected databases and the y-

axis indicated the number of selected studies. Accordingly, the blue color represents the

included journals, and the red color indicated the conferences. Besides this, the green color

represents the total number of studies. Moreover, the selected data sources are presented in the

sequence i.e. IEEE Xplore, Willey Online Library, Science Direct, and ACM digital library,

respectively. In the end, the total number of studies is also represented in this graph. In

forgoing this, it is highlighted that a total number of seven (07) journals and sixteen (16)

conferences are included in the IEEE. However, nineteen (19) and thirty-three (32) journals

are found in Wiley and Science Direct, respectively. It is pertinent to mention here that no

conference was considered in both respective DBs. Besides this, seven (07) journals and one

(01) conference were found at the ends of the ACM digital library. In the end, there are

collectively Eighty-three (83) studies are selected to conduct this research, where, sixty-six

(66) are published in journals and seventeen (17) are published in conferences.

7

19

33

7

66

16

0 0 1

17

23
19

33

8

83

0

10

20

30

40

50

60

70

80

90

IEEE Xplore Willey Online
Library

Scince Direct ACM Digital
Library

Total

Journal

Conference

Total

40

4.2.3 Distribution of studies on the basis journal type

Figure 4.3: Graph of the distribution of studies based on the journal type

This graph represents the distribution of studies based on the type of journal i.e.

‘Research Article’, ‘Review Article’, ‘Accepted Manuscript’, and ‘Special Issue Paper’. In the

same context, at the ends of the x-axis, the blue color indicates the research article, the red

color indicates the review article, the green color represents the accepted manuscript, and the

purple indicates the special issue paper. While the y-axis intimated the number of studies

considered against these types of journals. Accordingly, seven (07) research articles are

considered in IEEE. In forgoing this, no review article or accepted manuscript is found in this

DB. From Wiley, fifteen (15) research articles, one (1) review article, and three (3) special

issue papers were selected. However, from the DB of Science Direct, twenty (20) research

articles, and thirteen (13) accepted manuscripts are selected. In the end, seven (07) research

articles are selected from the ACM. Hence, collectively, forty-nine (49) research articles, one

(01) review article, thirteen (13) accepted manuscripts, and three (03) special issue papers

were considered to conduct this SLR.

Keeping given the above, the complete detail related to the distribution of studies in

terms of the Research articles, Review Paper, accepted manuscript, and special issue papers is

mentioned hereby, in the next, in the shape of tabulated form i.e Table 4.1.

7

15

20

7

49

0 1 0 0 1 0 0

13

0

13

0
3

0 0
3

0

10

20

30

40

50

60

IEEE Willey Scince Direct ACM Total

Research Article

Review Article

Accpted Manuscript

Special Issue Paper

41

Table 4.1 Distribution of Research Studies Journals

DB’s Research

Article

Review

Article

Accepted

Manuscript

Special

Issue

Paper

IEEE I1, I2, I3, I4, I5, I6, I7 _ _ _

Willey W2, W3, W4, W5, W6, W7,

W8, W9, W10, W11, W12,

W13, W15, W17, W18

W19

_

W1, W14,

W16

Science Direct SD2, SD4, SD6, SD8, SD10,

SD11, SD12, SD13, SD14,

SD15, SD16, SD17, SD20,

SD21, SD22, SD23, SD25,

SD27, SD29, SD33

_

SD1, SD3, SD5,

SD7, SD9, SD18,

SD19, SD24, SD26,

SD28, SD30, SD31,

SD32,

_

ACM A1, A2, A3, A4, A5, A6, A7 _ _ _

Table 4.1 indicates that seven research articles (I1, I2, I3, I4, I5, I6, I7) published in

IEEE, fifteen research articles (W2, W3, W4, W5, W6, W7, W8, W9, W10, W11, W12, W13,

W15, W17, W18) published in Willey, twenty research articles (SD2, SD4, SD6, SD8, SD10,

SD11, SD12, SD13, SD14, SD15, SD16, SD17, SD20, SD21, SD22, SD23, SD25, SD27,

SD29, SD33) published in Science Direct and seven research articles (A1, A2, A3, A4, A5,

A6, A7) published in ACM. Besides this one review article (W19) and three special issue

papers (W1, W14, W16) were published in Willey. Moreover, thirteen accepted manuscripts

were published in Science Direct.

4.2.4 Selected Conferences

Table 4.2 Distribution of Studies Conferences

Study

ID

Particulars of Conference

I8 International Conference and Workshops on the Engineering of Computer-based

Systems (ECBS)

I9 The Asia-Pacific Software Engineering Conference

I10 The Asia-Pacific Software Engineering Conference

I11 The International Conference on Computer Software and Applications.

I12 The International Requirements Engineering Conference (RE)

I13 The International Conference on Evaluation & Assessment in Software Engineering

I14 The Australian Conference on Software Engineering

I15 The International Conference on Automated Software Engineering

I16 The International Conference on Software Engineering (ICSE)

I17 The International Conference on Automated Software Engineering

I18 The International Requirements Engineering Conference

I19 The Latin American Computing Conference (CLEI)

42

I20 The Annual Computer and Applications Conference

I21 The International Conference on Model-Driven Engineering Languages and

Systems (Models)

I22 The Hawaii International Conference on System Sciences

I23 The Australian Software Engineering Conference

A8 The International Conference on Software Engineering (ICSE)

4.2.5 List of Journals

Table 4.3 Distribution of Studies based on Journals

Study ID Particulars of Journals

I1, I2, IEEE Systems Journal

I3, I6 IEEE Access Journal

I4 IEEE Transactions on Software Engineering

I5 IEEE Transactions on Systems Man, and Cybernetics

I7 IEEE Transactions on Software Engineering

W1, W3, W4, W5, W8, W9,

W11, W12, W13, W14, W18,

W19

Journal of Software Evaluation and Process

W2, W10, W16 Journal of Software Practice and Experience

W6 Journal of IET software

W7 Journal of Software Testing, Verification, and Reliability

W15 Journal of System Engineering

W17 Journal of Institution of Engineering and Technology

SD1, SD2, SD3, SD4, SD5, SD8,

SD11, SD12, SD13, SD16, SD17,

SD18, SD20, SD21, SD22, SD22,

SD24, SD26, SD29, SD30, SD31,

SD33

The Journal of Systems & Software

SD6, SD7 The Journal of Information and Software

SD9, SD19, SD27 The Journal Science of Computer Programming

SD10, SD15, SD32, The Journal of Information and Software Technology

SD14 The International Journal of Project Management

SD25 The Journal of Measurement

A1 Journal of ACM Transactions on Software Engineering

and Methodology

A2 Journal of ACM Computing Surveys

A3, A4, A5 Journal of ACM Transactions on Software Engineering

and Methodology

A6 Proceedings of the ACM on Human-Computer

Interaction

A7 Journal of ACM Transactions on Autonomous and

Adaptive Systems

43

4.2.6 Distribution of factors based on sub-factors/data units

Table 4.5 represents the distribution of factors based on their data-units or sub-factors.

Which is comprised of five different attributes i.e. Factor number, Paper ID, name of Factor,

Data units, and references, respectively.

Table 4.4 Distribution of Factors based on data units.

F # Paper ID Factor Data Units Reference

1. W1, W7, A1, A4 SW Defects 1-6 [1] [25] [26] [27]

2. I6, W1, W4, W8 Resource Management 7-12 [28] [1] [84] [85]

3. I19, I21, W8,

W14, W15, SD3,

SD11, SD16,

SD29, SD31,

SD33

Knowledge 13-14 [29] [30] W8 [21]

[86] [31] [20] [32]

[33] [34]

4. I5, I12, I14, W1,

W16, SD33, A1

Communication Issues 15-22 [35] [35] [36] [1] [87]

[34]

5. I6, I10, I13, W1,

W9, A1

Modules Dependencies 23-31 [28] [37] [38] [1] [17]

[26]

6. I6, I19, W14,

W17, W19, SD4,

SD17, SD24, A4

Traceability 32-37 [28] [29] [21] [39]

[18] [10] [40] [41]

[27]

7. I14, A1 Dynamic Business

Environment

38 [36] [26]

8. I13, I15, I16,

I17, W4, SD12,

SD29, A6

Stakeholder 39-43 [36] [42] [43] [44]

W4 [45] [32] [46]

9. I1, I2, I3,I8, I9,

I11, I16, I19,

W1, W2, W5,

W6, W15, W18,

SD1, SD4, SD6,

SD7, SD8, SD9,

SD10, SD11,

SD12, SD14,

SD15, SD16,

SD18, SD19,

SD20, SD22,

SD23, SD26,

SD27, SD28,

SD31, SD32,

SD33, A2, A8

Architecture 44-52 [47] [48] [49] [50]

[31] [51] [43] [29]

[1] [88] [14] [52] [53]

[54] [10] [55] [56]

[11] [57] [58] [20]

[45] [12] [59] [60]

[61] [62] [16] [63]

[64] [15] [65] [33]

[66] [34] [67] [68]

10. I1, I3, I4,I5,

I8,I11, I13, I15,

I18, I21, I22,

W10, W12,

W17, W5, SD5,

SW Design 53-55

[47] [49] [69] [93]

[50] [51] [42] [70]

[30] [71] [38] [72]

[22] [39] [14] [73]

[74] [16] [65] [26]

44

SD13, SD20,

SD28, A1, A2,

A4, A5, A6

[67] [27] [75] [46]

11. I10 Wrong Organizational

Choice

56-57 [37]

12. I11, W10, W16,

SD6, SD23

Adaption strategies and

Policies

58-61 [51] [72] [87] [55]

[64]

13. I1, W13, W19,

A3

Maintenance 62-63 [47] [89] [18] [76]

14. I7, A6, A8 SW Artefacts 64-68 [77] [46] [68]

15. W14 Usage 69-70 [21]

16. I12, I19, SD29,

A2

Trade-off 71-72 [35] [29] [32] [67]

17. I13, W9, W11,

W12, SD2,

SD26, A3

Code 73-75 [38] [17] [90] [22]

[78] [79] [76]

18. SD1 Technical Debt. 76-77 [54]

19. SD7, SD9, A6 Human Behaviour 78-79 [56] [57] [46]

20. W9, SD22,

SD30, SD8

Lack of Verification 80-82 [17] [63] [13] [11]

21. I2, I5, SD13 Team Cohesion 83-85 [48] [92] [74]

22. I12

Lack of Explicit Linkage 86 [35]

23. I6, W1, W4, A5

Documentation 87-89 [28] [1] [84] [75]

24. I21, W4, W13,

SD2, SD21,

SD25, SD29, A1,

A3

Complexity Concerns 90-91 [30] [84] [89][78]

[80] [81] [32] [26]

[76]

25. I3, I8, I9, I13,

I16, I17, I18,

W1, W2,

W3,W9, W11,

SD10, SD11,

SD14, SD22,

SD30, SD8

Requirement Volatility 92-103 [49] [50] [31] [38]

[43] [44] [70] [1] [88]

[91] [17] [90] [58]

[20] [12] [63] [13]

[11]

26. I3, I11 Quality Assurance Concerns 104-106 [49] [51]

27. SD17 Security Concerns 107 [40]

28. A7 Self-Healing Mechanism 108 [82]

4.3 Findings from Grounded Theory

As a result of this conduct of Systematic Literature Review (SLR), this study

identified factors based on different retrieved data units from the selected studies. Whereas,

the different authors represented different proposals. However, few authors represented the

same ideas. To fix this redundancy and inconsistency, there is an essential need to consider all

45

those studies only once at a time which has the same idea or purpose. For this purpose, the

grounded theory is implemented for the effective removal of redundancy or duplication of

data. Moreover, the data encoding technique is applied as shown in Table 4.5. As a result, the

sound full constructs originated as shown in Table 4.6 on account of implicit/explicit removal.

The following table contains the complete information related to the implementation

of the data encoding technique. where, the attribute namely ‘Paper ID’ represents the included

studies, and ‘Paper statement’ represents the data of respective studies for extraction purposes

of constructs via encoding. As a result, the generated codes are placed in the attribute of

‘Respective Code’. In the same context, the complete detail is tabulated below:

Table 4.5: Example of Data Encoding

Paper

ID

Paper Statement Respective

Code

Data Encoding

I3 “Dynamic system who’s Constituent Systems

(CS) is not known precisely at design time,

and the environment in which they operate is

uncertain. Moreover, unknown conditions and

volatility have significant effects on crucial

Quality Attributes (QAs) such as

performance, reliability, and security.”

I3L3,

I3L5,

I3L6

SW Design

AND

Volatility

AND

Quality Assurance

W1 “Requirements volatility is a major issue in

software development, causing problems such

as higher defect density, project delays, and

cost overruns. A software architecture that

guides the overall vision of software product

is one of the areas that is greatly affected by

requirements volatility.”

W1L3,

W1L4,

W1L6

Higher defect

density

AND

Resource

management

AND

Architecture

SD7 “Despite past empirical research in software

architecture decision-making, we have not yet

systematically studied how to perform such

empirical research. Software architecture

decision-making involves humans, their

behavioral issues, and practice.”

SD7L5,

SD7L4

Human Behavior

AND

Architecture

A1 “In today’s volatile business environments,

the collaboration between information

systems, both within and across company

borders, has become essential to success. A

key challenge is to manage the ever-growing

design complexity. In this article, we argue

that software architecture should play a more

prominent role in the development of

collaborative applications.“

A1L1,

A1L5,

A1L7,

A1L9

Dynamic Business

Environment

AND

SW Design

AND

Architecture

Complexity

AND

Communication

Issues

The above example indicated the execution of the data encoding technique. Wherein,

the second tuple of code is retrieved from the base paper of this study and discussed the

46

requirements volatility, and their major causes and further intimates about a few factors which

become the main cause and show their implications in the context of software architecture.

 Accordingly, the respective code was generated as W1L3, W1L4, and W1L6. As a result, the

data encoding accomplishment with the refine sets of factors. Besides this, the complete detail

in terms of data encoding is hereby placed in Appendix-D.

It is highlighted that different authors represented the same phenomenon with the same

naming convention. However, some authors reported the same phenomenon but with different

contexts or naming conventions. It is, therefore, for smooth representation of this data

encoding technique in a refined shape, an excise of explicit and implicit removal conducted,

as tabulated below:

Table 4.6 Example of Explicit/Implicit Removal

Paper ID Constructs Implicit & Explicit Removal

W1, W7, A1, A4 Higher defect density, fault proneness,

defect proneness, SW failure logs, error

handling, pre-release failure, and post-

release failure.

SW Defects

I5, I12, I14, W1,

W16, SD33, A1

Poor communication, user-centric

communication, coordination

mechanism, interaction mechanism, lack

of communication, communication gap,

message exchange, and information

distortion.

Communication Issues

I13, I15, I16, I17,

W4, W18, SD12,

SD29, A6

Stakeholder Synchronization,

Stakeholder Goal, Stakeholder

Involvement, User Involvement, and

Stakeholder Objectives.

Stakeholder

I3, I8, I9, I13, I16,

I17, I18, W1, W2,

W3,W9, W11,

SD10, SD11, SD14,

SD22, SD30, SD8

Ambiguous Requirement, Awareness of

requirement volatility, High level of

Evaluability, Changing user needs,

Tracing the requirement, requirement

specification, non-functional

requirements, unnecessary changes,

anticipated changes, changing to code,

knowledge of initial changes.

Requirement Volatility

As a result, the duplication of data and any kind of redundancy and inconsistency are

rectified by the run of explicit and implicit removal, and multiple constructs are generated

against each selected study, to get the refine sets of factors. Accordingly, the implementations

are as placed in Appendix-E.

47

4.4 Conduction of Expert Review

For smooth conduct of the Systematic Literature Review (SLR) and after the

successful implementation of the Grounded Theory, an exercise of Expert review was

conducted. Moreover, to meet the basic criteria of this conduct of the expert review, four (04)

experts are selected hereby having sound knowledge about the domain of this study, for

evaluation purposes of the identified list of factors. Where different authors suggested their

sound consent and recommended some suggestions. As a result, the suggestions are

considered and placed hereby in the suggestion table as tabulated below.

4.4.1 Expert Evaluation and Suggestion Table

 After the successful execution of the Expert Review. The suggestions of all the

Experts are adopted and implemented hereby in this study. Accordingly, Table 4.7 represents

the complete details in terms of the Expert's suggestions and implementations.

Table 4.7 Expert Review Suggestions and Implementation

Expert

Reviewers

Comments Response Action Taken Reference

Evaluator 1 The

suggestion is

to re-consider

the factors

based on their

categories.

Where few

factors belong

to category

three i.e. Both

(Internal and

External)

Thank you for

your valuable

comment. The

factors are

placed in

category three

i.e. both.

SW Defects,

Dependencies,

Architecture, SW

Design, Adaption to

change, Human

Behaviour, Team,

and Integration of

Linkage are

considered on

account of category

3 i.e. Both.

I1, I2, I4, I5, I3,

I6,I8, I9, I10, I11,

I12, I13, I15, I16,

I18, I19, I21, I22,

W1, W2, W5, W6,

W7, W9, W10,W12,

W15, W16, W17,

W5, W18, SD1,

SD4, SD5, SD6,

SD7, SD8, SD9,

SD10, SD11, SD12,

SD13, SD14, SD15,

SD16, SD18, SD19,

SD20, SD22, SD23,

SD26, SD27, SD28,

SD31, SD32, SD33,

A1, A2, A4, A5, A6,

A8

Evaluator 2 The

suggestion is

to re-consider

the naming

convention of

identified

factors.

Thank you for

your valuable

comment. The

suggested

naming

convention is

considered

against the

identified

Module

Dependencies to

Dependencies.

I6, I10, I13, W1,

W9, A1

Wrong

Organizational

Choice to

Organizational

Leadership.

I10

Adaption Strategies I11, W10, W16,

48

factors. and Policies to

Adaption to Change.

SD6, SD23

Code to Source

Code

I13, W9, W11, W12,

SD2, SD26, A3

Lack of verification

of Requirement

SD22, SD30, SD8

Team Cohesion to

Team

I2, I5, SD13

Lack of Explicit

Linkage to

Integration of

Linkage

I12

Complexity

Concerns to

Architectural

Complexity

I21, W4, W13, SD2,

SD21, SD25, SD29,

A1, A3

Quality Assurance

Concerns to Quality

Assurance

I3, I11

Maintenance to

SQW Maintenance

I1, W13, W19, A3

SW Artefacts to

Artefacts

I7, A6, A8

Security Concerns

to Security

SD17

Usage to Integration

of Usage

W14

Evaluator 3 The

suggestion is

to merge the

two identified

factors. i.e.

‘Requirement

’ and

‘Volatility’ as

Requirement

Volatility.

Thank you for

your valuable

comments.

The suggested

factors have

been merged.

The interlinked two

factors namely

‘Requirement’

placed at serial No.

20 and ‘Volatility’

placed at serial No.

25 of the expert

review have been

merged and

considered as a

single factor i.e.

‘Requirement

Volatility’.

I3, I8, I9, I13, I16,

I17, I18, W1, W2,

W3,W9, W11,

SD08, SD10, SD11,

SD14, SD22, SD30

Evaluator 4 The

suggestion is

to combine a

few sub-

factors or data

units. Besides

this,

suggested

refining the

Thank you for

your valuable

comment. The

suggested data

units or sub-

factors have

been

combined.

Moreover, the

The data units

namely stakeholder

goal and stakeholder

objective combined

as a single sub-

factor.

I13, I15, I16, I17,

W4, W18, SD12,

SD29, A6

Poor

communication and

lack of

I5, I12, I14, W1,

W16, SD33, A1

49

data units or

sub-factors in

terms of their

scope and

meaning and

re-consider as

a single one.

highlighted

data units or

sub-factors

have been

fixed or re-

considered in

terms of their

scope/meaning

and treated as

a single one.

communication are

refined and treated

as a single one.

Coordination and

Interaction

Mechanisms are

refined and treated

as a single one.

Dependency on

modules and

dependency b/w SW

Components refined

and treated as a

single one.

I6, I10, I13, W1,

W9, A1

Safety artifacts and

the structural

relationship have

been removed or

replaced on account

of scope.

I7, A6, A8

Evaluator 1 suggested that to re-consider the factors based on their defined categories.

(i.e. Categor1: Internal, Category 2: External, and Category 3: Both) Where, a few factors

belonging to category 3, ‘Both’ (i.e. Internal and External) to consider the valuable

suggestions of the worthy experts of the domain the highlighted factors placed at the ends of

category three i.e. both. Accordingly, the factors namely SW Defects, Dependencies,

Architecture, SW Design, Adaption to change, Human Behavior, Team, and Integration of

Linkage considered as both i.e. internal and external factors.

Evaluator 2 suggested that to re-consider the naming convention of identified factors.

As per directions of the worthy experts of the domain the factors naming convention rectified

with implementations as Module Dependencies to ‘Dependency’, Wrong Organizational

Choice to ‘Organizational Leadership, Adaption Strategies and Policies to ‘Adaption to

Change’, Code to ‘Source Code’, Lack of Verification to ‘Requirement’, Team Cohesion to

‘Team’, Lack of Explicit Linkage to ‘Integration of Linkage’ Complexity Concerns to

‘Architectural Complexity’, Quality Assurance Concerns to ‘Quality Assurance’,

Maintenance to ‘SQW Maintenance’, SW Artefacts to ‘Artefacts’, Security Concerns to

‘Security’ and Usage to ‘Integration of Usage’.

Evaluator 3 suggested that to merge the two identified factors i.e. ‘Requirement’ and

‘Volatility’ as a single factor. As per directions of the worthy Expert of the domain the

interlinked two factors namely ‘Requirement’ placed at serial No 20. and factor namely

50

‘Volatility’ placed at serial No. 25 of the Expert Evaluation Form has been merged and

considered as single factors i.e. ‘Requirement Volatility’.

Evaluator 4 suggested that there is a need to refine the data units or sub-categories

factors. In the same context, suggested combining a few data units or sub-factors in terms of

their scope and meaning or re-consider them as a single one. As per directions of the worthy

Expert of the domain, the data unit namely stakeholder goal and stakeholder objective

combined as a single sub-factor, as ‘stakeholder goal and objectives’. Besides this, as poor

communication and lack of communication have the same methodologies, therefore, this sub-

factors or data units refined this level and treated it as ‘Poor Communication’, only.

Accordingly, as the two sub-factors namely coordination and interaction mechanism have the

same worth, therefore, as per directions of the expert of the domain refined and considered as

a ‘Coordination Mechanism’. In the same context, Dependency on modules and dependency

b/w components are treated as a single one. Moreover, as per observations of the worthy

expert in the domain, the two data units have been removed.

In light of the above and to consider the given suggestions of worthy experts in the

domain, the final list of identified factors is tabulated below.

Table 4.8: After implementation of the Expert's Suggestions the Final list of factors along

with their category type and sub-factors

Sr

No.

Paper ID Sub Factors/Data Units Factor (s)

1. W1, W7, A1, A4 Higher Defect Density

SW Defects

Defect Proneness

SW failure logs

Error Handling

Pre-release failure

Post-release failures

2. I6, W1, W4, W8,

W18

Cost overrun

Resource

Management

Resource Estimation

Time and Resource Management

Budget Constraints

Schedule Issues

Project Size

3. I19, I21, W8, W14,

W15, SD3, SD11,

SD16, SD29, SD31,

SD33

Decision Knowledge

Knowledge
Decision Issues

4. I5, I12, I14, W1,

W16, SD33, A1

Poor Communication

Communication

Issues

User-Centric Communication

Coordination Mechanism

Communication Gap

51

Message Exchange

Information Distortion

5. I6, I10, I13, W1, W9,

A1

External Dependencies

Dependencies

Change Dependencies

Dependency on modules

Requirement Dependencies

Data dependencies

Architectural Dependencies

Task Dependencies

6. I6, I19, W14, W17,

W19, SD4, SD17,

SD24, A4

Inability to trace a design

Traceability

Tracing patterns

Design rationale Traceability

Traceability Links

Tracing Inconsistencies

Tracing the architectural

Implementation

7. I14, A1 Dynamic Business Environment Dynamic Business

Environment

8. I13, I15, I16, I17,

W4, W18, SD12,

SD29, A6

Stakeholder Synchronization Stakeholder

Stakeholder Goal & Objectives

Stakeholder Involvement

9. I1, I2, I3,I8, I9, I11,

I16, I19, W1, W2,

W5, W6, W15, W18,

SD1, SD4, SD6,

SD7, SD8, SD9,

SD10, SD11, SD12,

SD14, SD15, SD16,

SD18, SD19, SD20,

SD22, SD23, SD26,

SD27, SD28, SD31,

SD32, SD33, A2, A8

Architectural Knowledge

Architecture

Architectural Decision

Architectural Integration

Architectural Assumptions

Architectural Erosion

Architectural Styles

Architectural Specification

Architectural crosscutting concern

10. I1, I3, I4,I5, I8,I11,

I13, I15, I18, I21,

I22, W10, W12,

W17, W5, SD5,

SD13, SD20, SD28,

A1, A2, A4, A5, A6

Design Decision

SW Design

&

Design

Implementation

Design Patterns

Design Issues

11. I10 Wrong Organizational Choice Organizational

Leadership

Basic Competency

12. I11, W10, W16, SD6,

SD23

Adaption strategies and policies

Adaption to Change
Adaption Flexibility

Strategy Change

On-Demand Adaption

13. I1, W13, W19, A3 Maintenance Prediction
SQW Maintenance

SW Maintenance

14. I7, A6, A8 SW artifacts
Artifacts

Design Artefacts

52

 The factor ‘SW Defects’ is based on the higher defect density, Defect proneness, SW

failure logs, Error Handling, pre-release failure, and post-release failure sub-factors from the

studies of W1, W7, A1, and A4. While, the factor ‘Resource Management’ is based on the

Architecture Req. Artifacts

Artifacts documents management

15. W14 Integration of Usage
Integration of Usage

Utilization of Usage

16. I12, I19, SD29, A2 Trade-off Analysis
Trade-off

Architectural Trade-off

17. I13, W9, W11, W12,

SD2, SD26, A3

Code Smell

Code Coherent sets of code

Code Issues

18. SD1 Architectural Technical Debt
Technical Debt.

Technical Debt Design

19. SD7, SD9, A6 Human Behavior
Human Behaviour

Human Cognitive Constraints

20. I2, I5, SD13 Team Cohesion

Team Developer Focus

Effective Collaboration

21. I12 Lack of Explicit Linkage Integration of

Linkage

22. I6, W1, W4,

W18,SD27, A5

Architectural Documentation

Documentation Poor Documentation

Low-Quality Documentation

23. I21, W4, W13, SD2,

SD21, SD25, SD29,

A1,

Increased Complexity
Architectural

Complexity
Architectural Complexity

24. I3, I8, I9, I13, I16,

I17, I18, W1, W2,

W3,W9, W11,

SD08, SD10, SD11,

SD14, SD22, SD30

Ambiguous Requirement

Requirement

Volatility

Awareness of Requirement Volatility

High Level of Evaluability

Changing User Needs

Tracing the requirements

Requirement Specification

Non-Functional Requirements

Unnecessary changes

Anticipated changes

Changing to code

Knowledge of Initial Changes

Scope Change

Lack of Verification

Emotional and Relational Problems

Lack of Clarity in Business Objectives

25. I3, I11 Quality Assurance Concerns

Quality Assurance Maintaining Quality Attributes

Quality Attributes

26. SD17 Security Security

27. A7 Self-Healing Mechanism Self-Healing

Mechanism

53

Cost overrun, Resource Estimation, Time and Resource Management, Budget Constraints,

Schedule issues, and Project Size sub-factors from the studies of I6, W1, W4, W8, and W18.

Moreover, the factor namely ‘Knowledge’ based on decision knowledge and decision issues

sub-factors from the studies of I19, I21, W8, W14, W15, SD3, SD11, SD16, SD29, SD31,

SD33. Accordingly, the factor ‘Communication Issues’ is based on poor communication,

user-centric communication, coordination mechanism, communication gap, message

exchange, and information distortion sub-factors from the studies of I5, I12, I14, W1, W16,

SD33, and A1. In the same context, factor ‘Dependencies’ based on external dependencies,

change dependencies, dependency on modules, requirement dependencies, data dependencies,

architectural dependencies, and task dependencies sub-factors from the studies of I6, I10, I13,

W1, W9, A1.

The factor ‘Traceability’ is based on the inability to trace design, tracing patterns,

design rationale traceability, traceability links, tracing inconsistencies, and tracing the

architectural implementations sub-factors from the studies of I6, I19, W14, W17, W19, SD4,

SD17, SD24, A4. Besides this the factor namely ‘Dynamic Business Environment generated

from the studies I14, A1. The factor namely ‘Stakeholder’ based on stakeholder

synchronization, stakeholder goals, objectives, and stakeholder involvement sub-factors from

the studies I13, I15, I16, I17, W4, W18, SD12, SD29, and A6. On the hand, the most

important factor namely ‘Architecture’ based on Architectural knowledge, architectural

decision, architectural integration, architectural assumptions, Architectural erosion,

architectural styles, architectural specification, and architectural crosscutting concern sub-

factors from the studies I1, I2, I3, I8, I9, I11, I16, I19, W1, W2, W5, W6, W15, W18, SD1,

SD4, SD6, SD7, SD8, SD9, SD10, SD11, SD12, SD14, SD15, SD16, SD18, SD19, SD20,

SD22, SD23, SD26, SD27, SD28, SD31, SD32, SD33, A2, A8. In foregoing of this, the

factor namely ‘SW Design and Design Implementations’ based on a design decision, design

patterns, and design issues from the studies I1, I3, I4, I5, I8, I11, I13, I15, I18, I21, I22, W10,

W12, W17, W5, SD5, SD13, SD20, SD28, A1, A2, A4, A5, A6.

Moreover, the factor ‘Organizational Leadership’ is based on wrong organizational

choice and basic competency sub-factors from the study I10. The factor namely ‘Adaption to

Change’ based on adaption strategies and policies, adaption flexibility, strategy change, and

on-demand adaption sub-factors from the studies I11, W10, W16, SD6, SD23. While, the

factor namely ‘SQW Maintenance’ based on maintenance prediction and SW maintenance

from the studies I1, W13, W19, and A3. The factor ‘Artefacts’ is based on SW artifacts,

Design artifacts, architecture requirement artifacts, and artifacts documents management sub-

factors from the studies I7, A6, and A8. The factor ‘Integration of Usage’ is based on the

54

Integration of usage and utilization of usage from the study W14. The factor ‘Trade-Off’ is

based on trade-off analysis and architectural trade-off from the studies I12, I19, SD29, and

A2. The factor namely ‘code’ based on code smell, coherent sets of code, and code issues sub-

factors from the studies I13, W9, W11, W12, SD2, SD26, and A3. The factor ‘Technical

Debt.' is based on architectural technical debt. and technical debt design from the study SD1.

The factor ‘Human Behavior’ is based on human cognitive constraints and behavior

sub-factors from the studies SD7, SD9, and A6. The factor namely ‘Team’ based on team

cohesion and developer focus from the studies I2, I5, and SD13. The factor ‘Integration of

Linkage’ is based on the Lack of explicit linkage sub-factor from the study I12. The factor

namely ‘Documentation’ architectural documentation, poor documentation, and low-quality

documentation sub-factors from the studies I6, W1, W4, W18, SD27, and A5. The factor

‘Architectural Complexity’ is based on increased complexity and architectural complexity

from the studies I21, W4, W13, SD2, SD21, SD25, SD29, A1, and A3. Besides this, another

important factor namely ‘Requirement Volatility’ based on the ambiguous requirement,

awareness of requirement volatility, high level of evaluability, changing user needs, tracing

the requirements, requirement specification, non-functional requirements, unnecessary

changes, anticipated changes, changing to code, knowledge of initial changes, scope change,

lack of verification, emotional and relational problem and lack of clarity in business objective

sub-factors from the studies I3, I8, I9, I13, I16, I17, I18, W1, W2, W3, W9, W11, SD08,

SD10, SD11, SD14, SD22, SD30. Moreover, the factor namely, ‘Quality Assurance based on

the quality assurance concerns, maintaining quality attributes or quality attributes sub-factors

from the studies I3, I11. Accordingly, the factors namely ‘Security’ and ‘Self-Healing

Mechanism derived from the studies SD17 and A7, respectively.

To answer the research question RQ1, Table 4.9 tabulated below indicated all possible

factors of the requirements volatility on software architecture. Wherein it, the table is

comprised of twenty-seven attributes horizontally which contain the complete information in

terms of factors, and eighty-three tuples vertically which contain the complete data in terms of

the studies or paper IDs tilted as I1-I22, SD1- SD33, W1-W19, and A1-A8.

55

Table 4.9 Tabulated representation of RV Factors related to the SW Architecture.

F
a

ct
o
rs

S
o

ft
w

a
re

 D
ef

ec
ts

R
es

o
u

rc
e

M
a

n
a

g
em

en
t

K
n

o
w

le
d

g
e

C
o

m
m

u
n

ic
a

ti
o

n
 I

ss
u

e

D
ep

en
d

en
ci

es

T
ra

ce
a

b
il

it
y

D
y

n
a
m

ic
 B

u
si

n
es

s
E

n
v

ir
o

n
m

en
t

S
ta

k
eh

o
ld

er

A
rc

h
it

ec
tu

re

S
W

 D
es

ig
n

O
rg

a
n

iz
a

ti
o

n
a
l

L
ea

d
er

sh
ip

A
d

a
p

ta
ti

o
n

 t
o

 C
h

a
n

g
e

S
Q

W
 M

a
in

te
n

a
n

ce

A
rt

if
a

ct
s

In
te

g
ra

ti
o

n
 o

f
U

sa
g

e

T
ra

d
e-

o
ff

C
o

d
e

T
ec

h
n

ic
a

l
D

eb
t

H
u

m
a

n
 B

eh
a

v
io

r

T
ea

m

In
te

g
ra

ti
o

n
 o

f
 L

in
k

a
g

e

D
o

cu
m

en
ta

ti
o

n

A
rc

h
it

ec
tu

ra
l

C
o

m
p

le
x

it
y

R
eq

u
ir

em
en

t
V

o
la

ti
li

ty

Q
u

a
li

ty
 A

ss
u

ra
n

ce

S
ec

u
ri

ty

S
el

f-
H

ea
li

n
g

 M
ec

h
a

n
is

m

Paper ID’s

I1 - - - - - - - - - - - - - - - - - - - - - - - -

I2 - - - - - - - - - - - - - - - - - - - - - - - - -

I3 - - - - - - - - - - - - - - - - - - - - - - -

I4 - - - - - - - - - - - - - - - - - - - - - - - - - -

I5 - - - - - - - - - - - - - - - - - - - - - - - -

I6 - - - - - - - - - - - - - - - - - - - - - - -

I7 - - - - - - - - - - - - - - - - - - - - - - - - - -

I8 - - - - - - - - - - - - - - - - - - - - - - - -

I9 - - - - - - - - - - - - - - - - - - - - - - - - -

I10 - - - - - - - - - - - - - - - - - - - - - - - - -

I11 - - - - - - - - - - - - - - - - - - - - - - -

I12 - - - - - - - - - - - - - - - - - - - - - - - -

I13 - - - - - - - - - - - - - - - - - - - - - -

I14 - - - - - -

56

115 - - - - - - - - - - - - - - - - - - - - - - - - -

I16 - - - - - - - - - - - - - - - - - - - - - - - -

I17 - - - - - - - - - - - - - - - - - - - - - - - - -

I18 - - - - - - - - - - - - - - - - - - - - - - - - -

I19 - - - - - - - - - - - - - - - - - - - - - - -

I20 -

I21 - - - - - - - - - - - - - - - - - - - - - - - -

I22 - - - - - - - - - - - - - - - - - - - - - - - - - -

SD1 - - - - - - - - - - - - - - - - - - - - - - - - -

SD2 - - - - - - - - - - - - - - - - - - - - - - - - -

SD3 - - -

SD4 - - - - - - - - - - - - - - - - - - - - - - - - -

SD5 - - - - - - - - - - - - - - - - - - - - - - - - - -

SD6 - - - - - - - - - - - - - - - - - - - - - - - - -

SD7 - - - - - - - - - - - - - - - - - - - - - - - - -

SD8 - - - - - - - - - - - - - - - - - - - - - - - - -

SD9 - - - - - - - - - - - - - - - - - - - - - - - - -

SD10 - - - - - - - - - - - - - - - - - - - - - - - - -

SD11 - - - - - - - - - - - - - - - - - - - - - - - -

SD12 - - - - - - - - - - - - - - - - - - - - - - - - -

SD13 - - - - - - - - - - - - - - - - - - - - - - - - -

SD14 - - - - - - - - - - - - - - - - - - - - - - - - -

SD15 - - - - - - - - - - - - - - - - - - - - - - - - - -

SD16 - - - - - - - - - - - - - - - - - - - - - - - - -

SD17 - - - - - - - - - - - - - - - - - - - - - - - -

SD18 - - - - - - - - - - - - - - - - - - - - - - - - - -

SD19 - - - - - - - - - - - - - - - - - - - - - - - - - -

SD20 - - - - - - - - - - - - - - - - - - - - - - - - -

57

SD21 - - - - -

SD22 - - - - - - - - - - - - - - - - - - - - - - - - -

SD23 - - - - - - - - - - - - - - - - - - - - - - - - -

SD24 - - - - - -

SD25 - - - - -

SD26 - - - - - - - - - - - - - - - - - - - - - - - - -

SD27 - - - - - - - - - - - - - - - - - - - - - - - - -

SD28 - - - - - - - - - - - - - - - - - - - - - - - - -

SD29 - - - - - - - - - - - - - - - - - - - - - - -

SD30 - - - -

SD31 - - - - - - - - - - - - - - - - - - - - - - - - -

SD32 - - - - - - - - - - - - - - - - - - - - - - - - - -

SD33 - - - - - - - - - - - - - - - - - - - - - - - -

W1 - - - - - - - - - - - - - - - - - - - -

W2 - - - - - - - - - - - - - - - - - - - - - - - - -

W3 - - - -

W4 - - - - - - - - - - - - - - - - - - - - - - -

W5 - - - - - - - - - - - - - - - - - - - - - - - - -

W6 - - - - - - - - - - - - - - - - - - - - - - - - - -

W7 -

W8 - -

W9 - - - - - - - - - - - - - - - - - - - - - - - -

W10 - - - - - - - - - - - - - - - - - - - - - - - - -

W11 - - - - - - - - - - - - - - - - - - - - - - - - -

W12 - - - - - - - - - - - - - - - - - - - - - - - - -

W13 - - - - - - - - - - - - - - - - - - - - - - - - -

W14 - - - - - - - - - - - - - - - - - - - - - - - -

W15 - - - - - - - - - - - - - - - - - - - - - - - - -

58

W16 - - - - - - - - - - - - - - - - - - - - - - - - -

W17 - - - - - - - - - - - - - - - - - - - - - - - - -

W18 - - - - - - - - - - - - - - - - - - - - - - -

W19 - - - - - - - - - - - - - - - - - - - - - - - - -

A1 - - - - - - - - - - - - - - - - - - - - -

A2 - - - - - - - - - - - - - - - - - - - - - - - -

A3 - - - - - - - - - - - - - - - - - - - - - - - -

A4 - - - - - - - - - - - - - - - - - - - - - - - -

A5 - - - - - - - - - - - - - - - - - - - - - - - - -

A6 - - - - - - - - - - - - - - - - - - - - - - -

A7 -

A8 - - - - - - - - - - - - - - - - - - - - - - - - -

59

The symbol “” indicated the occurrence of the factor included in the respective studies while

the symbol “-“ indicated the non-occurrence of the factor against each study. Accordingly, the factor

‘SW Defects’ occurred in W1, W7 studies of the Willey online Library and A1, A4 studies from the

ACM digital library. The factor namely, ‘Resource Management’ occurred in the I6 study of IEEE

Explorer, W1, W4, W8, and W18 studies of the Wiley online library. The factor namely ‘Knowledge’

occurred in the I19, I21 studies from the IEEE, W8, W14, and W15 studies from the Wiley

online library and SD3, SD11, SD16, SD29, SD31, SD33 studies from the Science Direct.

Factor ‘Communication Issues’ occurred in I5, I12, and I14 studies from the IEEE, SD33

from the Science Direct and W1, W16 studies from the Willey, and A1 from the ACM Digital

Library. The factor namely ‘Dependencies’ I6, I10, and I13 from the studies IEEE, W1, and

W9 studies from the Wiley online library and A1 from the ACM digital library. “Traceability’

occurred in I6, I19 studies from the IEEE, SD4, SD17, SD24 studies from the Science Direct,

W14, W17, and W19 studies from Willey, and A4 studies from the ACM. The factor namely

‘Dynamic Business Environment’ occurred in the I14 from the studies IEEE and A1 study of

the ACM.

The factor ‘Stakeholder’ occurred in the I13, I15, I16, and I17 studies from the IEEE,

SD12, SD29 studies of the science direct, W4, W18 studies from the Willey and in A6 study

of the ACM Digital Library and A6 study of the ACM Digital library. The Factor namely

‘Architecture’ occurred in the I1, I2, I3,I8, I9, I11, I16, I19 studies form the IEEE, SD1, SD4,

SD6, SD7, SD8, SD9, SD10, SD11, SD12, SD14, SD15, SD16, SD18, SD19, SD20, SD22,

SD23, SD26, SD27, SD28, SD31, SD32, SD33 studies from the Science Direct,

W1, W2, W5, W6, W15, W18 studies from the Willey and A2, A8 studies from the ACM

Digital Library. The factor namely ‘SW Design’ found in the I1, I3, I4,I5, I8,I11, I13, I15,

I18, I21, I22 studies from the IEEE, SD5, SD13, SD20, SD28 studies from the Science

Direct, W10, W12, W17 studies from the Willey and A1, A2, A4, A5, A6 studies from the

ACM digital library. The factor ‘Organizational Leadership’ occurred in the I10 study from

the IEEE. The Factor ‘Adaption to Change’ was found in the I11 study from the IEEE, SD6,

SD23 studies from Science Direct, and W10, and W16 studies from the Willey. The factor

‘SQW Maintenance’ is found in the I1 from the IEEE, W13, and W19 studies from the Willey

and A3 study from the ACM Digital Library. The factor ‘Artefacts’ is found in I7 from the

study IEEE and in the A6, and A8 studies from the ACM. The factor ‘Integration of Usage’ in

the W14 study from Willey. The factor namely ‘Trade-off’ found in I12, I19 studies from

IEEE, SD29 study from Science Direct, and A2 study from the ACM. The factor ‘Code’

found in the I13 study from the IEEE, SD2, SD26 studies from the Science Direct, W9, W11,

60

and W12 studies from the Willey and A3 study from the ACM. The factor namely ‘Technical

Debt’ found in study SD1.

The factor namely ‘Human Behavior’ occurred in the SD7 and SD9 studies from the

Science Direct and A6 study from the ACM Digital Library. The factor ‘Team’ was found in

I2 and I5 studies from the IEEE and SD13 studies from Science Direct. The Factor

‘Integration of Linkage’ was found in the W14 study from Willey Online Library. The factor

‘Documentation’ found in the I6 study from IEEE, the SD27 study from Science Direct, W1,

W4, and W18 studies from the Willey Online Library, and the A5 study from ACM Digital

Library. The factor ‘Architectural Complexity’ found in the I21 study from IEEE, SD2, SD21,

SD25, and SD29 studies from Science Direct, W4, W13 from the studies of Willey, and A3

from the ACM. The factor ‘Requirement Volatility’ found in the I3, I8, I9, I13, I16, I17, I18

studies from IEEE, SD08, SD10, SD11, SD14, SD22, SD30 studies from the Science Direct

and W1, W2, W3,W9, W11 studies from the Willey. The factor namely ‘Quality Assurance’

found in I3, and I11 studies from the IEEE. The factor ‘Security’ is found in the SD17 from

Science Direct. In the last, the factor namely ‘Self-Healing Mechanism’ found in the A7 study

from the ACM Digital Library.

4.5 Description of the Identified Factors

4.5.1 Software Defects

 The software team members and stakeholders perceived the ‘SW Defect’ as a fault

and a wrong attempt. However, this is an important factor of the software development

process which is most specifically used by the testers or quality-concerned ones. Whereby, the

testers considered it by reading the ‘requirement document’, which is the core element of this

factor, to dig out defects related to incorrect behavior or anything that is not good. The core

purpose of this exercise is to determine the meeting of project requirements to fulfill customer

satisfaction. Hence, through the use of this factor, the testers reported the upcoming changes

or occurrence of requirement volatility to the developers. In the same context, when

requirement volatility occurs it changes the previous architecture decision redundant. As a

result, the architects have to put effort to make a new round of architectural prototypes.

Therefore, it is important to consider the software defect timely; it will concurrently help out

the developers and engineers to adopt the changes throughout the development process.

Hence, there is a necessity to consider this factor, to avoid the pre-release and post-release

failures of the project [1][82].

61

4.5.2 Resource Management

 As, the requirements volatility could occur throughout the software development

process, as a result, architects take time to update the architecture decision to the re-designing

purpose of the prototype. This causes challenges, in terms of the project size, time and

schedule issues, and budget constraints matters. Therefore, there is necessary to consider

resource management effectively. To cope with these challenges, the management has to

prepare development roaster plans with the quarterly releases of the project. As a result, the

developers and architects could analyze the project resources and could be able to meet the

upcoming changes in the document and architects will be able to handle the re-planning and

architectural decision issues and will also be able to update the backlog list for smooth

development [1][28].

4.5.3 Knowledge

 Meeting with the upcoming changes or volatility thought out software development

is a challenging activity. But, it could be achieved through the phenomenon of knowledge. In

the same context, the problem of the existing software architecture that could adversely affect

the architecture decision is an important element to consider with the knowledge. This factor

plays a vital role in development if developers or engineers have sound integration of

knowledge that from where to start the changes and how it could impact the software

architecture. Hence, this is an important factor that needed to consider on time with

experience and by generating fruitful development strategies [20][21].

4.5.4 Communication Issues

 Communication issues may originate during the elicitation phase, where the

customer elaborates on the upcoming desired product. This is normally occurring due to the

wrong use of terminologies and semantics between the customer and the developers.

Moreover, language barriers and cultural differences are other issues that lead to

communication issues. There is a dire need to cope with factors by using supporting tools and

well-developed approaches to improve these factors for successful development or to meet the

desired end product [1]. To deal with this phenomenon of twin peaks of the SLDC, there is an

essential need to consider this factor more precisely, to cope with the upcoming changes [34].

62

4.5.5 Dependencies

 The developers are working in a dynamic platform along with different business

lines and geographic locations. As a result, they have to deal with some external as well as

internal dependencies. For example, for giving the solution of the end product, developers

may require collaboration among team members from different business lines. Where one

may deal with the coding and another may deal with the service-providing related matters. In

this context, if requirement volatility occurs, they are dependent on each other which are

known as external dependencies and different business lines engineers are dependent on each

other to adopt the changes. Moreover, no doubt, requirement volatility is a challenging

activity but developers could easily achieve it if they are familiar with the used modules along

with their dependencies and their strong relationship that changes one how much effect on

another. As a result, developers easily adopt upcoming changes, which are known as internal

dependencies. To deal with the upcoming changes, there is an essential need to consider these

dependencies, effectively [1] [21].

4.5.6 Traceability

 To implement the explicit or implicit volatility the architects have to deal with the

architectural decisions for re-designing the purpose of the prototype. It could be achieved by

tracing back the requirement changes throughout the development process. This phenomenon

of traceback is known as traceability. Moreover, it is another important factor to consider by

the architects or developers to deal with the upcoming changes. To consider traceability, the

architects record the requirements or design while making an architectural decision. As a

result, they can easily trace back the decisions in case of re-designing the architecture. But,

Requirement volatility could adversely affect this recording method or may cause redundancy

or muddle the information that is already recorded. To cope with this issue, there is an

essential need to deal with this factor of traceability to trace back the architectural decisions

more, effectively [1] [40].

4.5.7 Dynamic Business Environment

 Now a day, IT parks are operating in a dynamic business domain and adjusting

new strategies to accommodate updated or new development techniques for being part of the

market competition. As a result, the market leads the situation being more challenging to

adopt the upcoming changes or requirement volatility. There is an essential need to consider

this factor, where, as most of the customers are working on android-based applications, in a

63

result, their operating system must be enough dynamic to consider upcoming changes,

frequently [1].

4.5.8 Stakeholder

 Stakeholder concern is one of the major causes of requirement volatility. It is a

fundamental activity that occurs throughout the software development process. As a result,

architects also have to adopt the upcoming changes by revisiting their architectural decisions.

Moreover, the architects are not only the core person to deal with the architectural changes the

different stakeholder concerns are also involved in this process. Therefore, for successful

deployment, there is an essential need to consider stakeholder synchronization. This problem

occurs due to interunit issues, where the team is in the same business unit but at different

development sites. To cope with this challenge the architects needed to use effective tools to

overcome the raised inconsistency or to meet the requirement volatility concerning

stakeholder involvement [1] [45].

4.5.9 Architecture

 Software architecture represents the complete vision of the software system that

could adversely affect by the requirement volatility. Whenever it occurs, the architects have to

reconsider the architectural decision to reshape the architectural design according to the

customer's need or want. As a result, architects also have to reconsider the product backlog.

This event could raise redundancy and inconsistency at the architectural implementation ends.

There is an essential need to consider this factor more precisely and the developers must get

their requirements in all aspects during the elicitation phase, first. Moreover, as the modern

iterative models such as agile consider it throughout the SDLC, therefore, firms needed to

make a consolidated plan in respect of the upcoming changes along with the project release

matters and timeframe issues. As a result, the architects will be able to manage the

architectural decisions to cope with the upcoming changes [34].

4.5.10 SW Design and Design Implementation

 Software designs are becoming more revolutionary during the software

development process (SDP), due to the adoption of frequent changes in stakeholder

requirements. Therefore, the developers have to consider different platforms at once such as

handling the errors or bugs, adding up the new functionalities or features in design

implementation, or deletion of some previous ones. Handlings of these changes prevent the

64

degradation of SE design or code. This challenge could be detected through ‘software smells’

or ‘code smells. Usually, it occurs during the code or design levels. However, the existence of

code smell also produces low-quality attributes such as changeability. To fix this, developers

have to use the ‘refactoring’ process during SW design. This process alters the SW

implementations and design without changing its external behavior. As a result, it will

enhance the design implementations or SW design along with the well-structured programs.

Therefore, there is an essential need to consider this factor to cope with the upcoming changes

in the SW Design [22]

4.5.11 Organizational Leadership

 Organizational leadership is an important factor, where, the firms are planning,

controlling, managing support, informing, and evaluating the team members for the successful

completion of the desired product. The leadership and management of the firms are

overlapping each other to meet the desired goals through effective communication and

teamwork. The strong relationship between these two pillars of the organizations or firms

indicates their competency level. To meet the stakeholder requirements there is an essential

need to consider this factor of organizational leadership, whereby, the management of the

organization needed to play a vital role to train the staff along with the performance essentials,

get familiarize them with the user's culture and motivate them to consider emotional

intelligence during dealing with them [37].

4.5.12 Adaption to Change

 Modern iterative systems are dealing with changes throughout the software

development life cycle along with the customer collaboration or interaction mechanism.

Therefore, system designers are becoming more experienced in system adaptability. Where an

adaptive system can modify its system design during run time through adaption to change. As

a result, the system designer requires knowledge about the adaption to change e.g. whether

these changes are system-driven or user-driven, and analyze their impact on the system. To

cope with the requirement volatility, there is an essential need to consider this factor and train

SW designers along with experience that how to handle the adaption to change mechanism

during a run time [72].

65

4.5.13 SQW Maintenance

 The primary objective of SQW maintenance is to make the software system

operates according to the stakeholder's needs and fix the bugs in the system. Software

maintenance usually occurs when it has been delivered to the end user. Besides this, SW

maintenance may involve where the new functionality is needed to be added e.g. using the

latest technology. Moreover, it also may require maintenance on the software code segments,

whereby, a few software patches are needed to execute to fix the bugs in the document.

Accordingly, it could also lead to affected by cost constraint issues. To deal with the

requirement volatility and software architecture there is an essential need to consider this

factor and train the engineers to predict the software maintenance timely to fix the errors in

the code segment and try to meet the user level satisfaction before the deployment.

4.5.14 Artifacts

 Software artifacts are the key features of the software development process which

are used for manufacturing the software architecture and system design. In the same context,

artifacts included diagrams, architecture designs or images, meeting notes, documentation

papers, source code, and prototypes. Therefore, artifacts act like a roadmap that helps the

developers to trace the design implementations. Moreover, the software artifacts are usually

created during the development phases and restored in the repository document. Whenever the

changes occur engineers re-visit the repository to re-designing the purpose of the prototype

and architectural decisions to adopt the changes. Besides this, many of the artifacts are sued as

safety evidence. As a result, the upcoming changes could be easily managed and it could also

help to better assist in the impact analysis related to the consequences of changes in the end

product.

4.5.15 Integration of Usage

 The integration of usage is the prominent factor that is used by the practitioners

and which is reported about the software tools that are available in the company. In the same

context, this factor deal with four different usages, whereby, the first one is about ‘support of

external usage knowledge system’ which is used for getting feedback, the second one is about

‘integrated development’, which is used to ensure the functionality of the system developed

by the developers in the code, the third one is about ‘support for interfaces’ which are used to

ensure the hardware related changes and the fourth one is about, ‘full support for any kind of

project management tool’, which is used to ensure the stakeholder's acceptance by focusing

66

on their usages. To cope with the upcoming changes or requirement volatility, there is an

essential need to consider this factor as a priority [21].

4.5.16 Trade-off

 The trade-off is another visible factor that is used for risk mitigation purposes

during the software development life cycle. As a result, the engineers meet the quality

attributes of the development process and enable the upcoming changes in the software

structure, design, or code. To achieve the goals of the end product there is a dire need to

consider trade-off analysis and sensitivity along the way so the desired product can be built

correctly [32].

4.5.17 Code

 The need of managing the requirements volatility in the software development

process has been raised as one of the challenging tasks of software development. Whereby,

the developers have to adopt the changes frequently throughout the development process.

Besides this, during this process architecture appears as an integral unit that could also

adversely affect by the volatility. Moreover, the architecture must have to translate in the

shape of ‘code'. Therefore, one wrong attempt between architecture and code could lead to

software failures in terms of the project's financial implications as well as customer

expectations. To cope with upcoming changes there is an essential need to consider code

implementations as a priority [79].

4.5.18 Technical Debt

 The engineers usually prioritize the requirements in respect of customer needs

over architectural considerations. However, the architects have to consider the requirements

with architectural aspects; this phenomenon is known as, ‘Technical Debt’. As architects are

also flooded with requirement volatility, in a result, they lost their vision to find out optimal

architecture design implementations. Moreover, prioritizing the functional requirement over

the non-functional requirement is a major cause of technical debt. Because most of the non-

functional requirements are architectural significant requirements and they are also needed to

consider for smooth architectural building. Therefore, there is a dire need to consider

technical debt. on priority to cope with the upcoming changes along with accurate

architectural implementations [1].

67

4.5.19 Human Behavior

 Software development activity is human role activity and behavior of involved

humans having great importance for the software development community. The involved

human behavior is usually associated at three different levels i.e. industrial behavior, team

behavior, and organizational behavior. Whereby, the industrial and team behavior rectifies the

failures of the existing tools in the system. While, in software architecture decisions humans

also play a vital role, in terms of architects or stakeholders. As a result, human behavior

factors have a huge impact on software development. Therefore, there is a dire need to

consider this factor and the top-level management has to use authentic strategies to make their

developers interconnected, on the same dashboard of the development along with the refined

set of goals and objectives among the stakeholders and team members [56].

4.5.20 Team

 The software development team works together for developing the end products.

During development, every person contributed their work for the software development.

However, the individual team members of the development team have specialized skills and

domains for development but the accountability of work measures as a whole ’team’. To

consider the upcoming change or volatility there is a dire need that the team members to be

closely interconnected with each other through an exchange of messages or meetings. As a

result, this factor contributes a significant positive impact on software development and

change management [83].

4.5.21 Integration of Linkage

 The adaptive system aims to consider the requirements volatility at runtime. As a

result, the systems require re-configuration and the resources may require trade-off analysis

between the functional and non-functional requirements. It is penitent to mention here that the

architecture development may have interlinked with the non-functional requirement.

However, developers usually prioritize the functional requirements over the non-functional.

As a result, the lack of explicit linkage originates raise heavy surge in the failure rate of

software development. Therefore, to cope with the upcoming change and architectural

management there is an essential need to consider the integration of linkage which consider or

prioritized the non-functional requirements to meet the user level satisfaction with

confirmative architecture development [35].

68

4.5.22 Documentation

 This is the most prominent factor of software development and it helps to preserve

and share the knowledge about the system that is going to build. In the initial phase freeze

requirements are placed in this document for the development purpose of the product. It acts

like a repository of customer requirements in a documented form, which is used by the

developers for developing the system. But, it becomes difficult to maintain when the

requirement is required frequently changed in the document. To cope with the upcoming

changes and architectural re-designing there is a dire need to consider this factor as a priority

and try to keep refreshing this document with the updated changes in the requirements till the

end of the product [1] [15].

4.5.23 Architectural Complexity

 Architectural complexity increase when the future requirements are not clear. To

reduce the complexity there are normally two different ways used to design the architecture.

Whereby, the first option is to build a full-scale initial architecture that is flexible enough to

consider future requirements. During this phase, the frequency of architectural complexity

seems to be high to manage and it also requires intensive time and other resources to

implement the architecture. As a result, it helps to consider future changes easily. The second

option is to consider the architecture simple and evolve it as time progress and new

requirements whenever received. In the same context, most of the developers used this option

because this method is aligned with the agile implementations which are most widely used by

the developers to meet the requirements volatility. There is a dire need to consider this factor

more wisely because new systems are working on iterative development or dealing with the

changes throughout the software development process [1] [80].

4.5.24 Requirement Volatility

 Requirement volatility is a fundamental activity that is required throughout the

software development life cycle. As a result, it could adversely affect the software

architecture which intimates the complete vision of the desired product. Moreover, it is a

challenging activity, but it could be achieved through the integration of usage and decision

knowledge [21]. This study revealed that communication issues and dependencies are the core

factor which is becoming the cause of requirements volatility and the factors related to the

architecture i.e. traceability, SW design, design implementations, and architectural complexity

69

are the main factors that have the major implications of requirements volatility on the

software architecture. Therefore, practitioners have to consider this factor as a key priority for

the smooth adaption of future changes during development phases [1] [5].

4.5.25 Quality Assurance

 There are a lot of variations that exist to consider quality assurance during the

software development process. The practitioner faces many challenges related to integrating

quality attributes. Besides this, during the development process, developers have to consider

the implicit as well as explicit requirements. Which may cause inconsistency in the

management of the quality attributes of the end product. However, most of the time software

team is considering the requirements on their own and defines priorities, to ensure and

integrate quality assurance. This phenomenon leads to an increase in the complexity at the

quality ends, especially, when requirements volatility existence is higher. Therefore,

upcoming changes could potentially impact quality assurance. The practitioners have to

consider this factor more precisely and try to meet the quality attribute rather than typically

assigning the priorities to specific retirements. As a result, the development team will be able

to achieve the quality attributes of the end product [1] [49].

4.5.26 Security

 Software security is a visible factor in the software development process.

Whereby, different techniques or applications are used to protect the end product from

vulnerabilities. Which also ensures the smooth working of the system and prevents it from

attacks. The major goal of this factor is to prevent the product from failure or defects.

Moreover, this factor also measures the extra-functional properties of the product along with

the security element i.e. performance and reliability. To cope with the upcoming changes

there is an essential need to consider the security functions along with the updated

requirements and their implications on the product [40].

4.5.27 Self-Healing Mechanism

 Self-healing mechanism indicated bout the self-adaption which can be achieved

through different ways. For this, rule-based approaches considered the phenomenon of self-

adaption if the system and environment meet certain conditions. However, utility-driven

approaches are used to adapt the optimal decisions through cost optimization that could run on

large-scale problems. In the same context, the self-healing mechanism adopts both rule-based

70

approaches and utility-driven approaches, through expensive optimization. Moreover,

Architects used this scheme for the construction of architecture-based self-healing problems,

whereby, the patterns are designed to accommodate the mechanism of self-healing for the

architecture. To cope with the upcoming change and construction of the dynamic architectural

environment, there is an essential need to consider this factor, precisely [82].

4.6 Summary of the Chapter

This chapter intimated the findings of the conducted, SLR, grounded theory, and

Expert Review. Whereby, a list of factors identified by the conduct of SLR and in numbers

refined list of twenty-seven (27) factors are identified through the conduct of grounded theory.

In the end, the suggestions and recommendations are collected by worthy experts in the

domain to rectify the proposed factors. After the implementation of the expert's

recommendations and for conducting the empirical investigation, the final list of factors is

rotated among the competent practitioners, engineers, and developers to get the positive

implications of requirements volatility on the software architecture through the conduct of an

industrial survey. In the same context, the forthcoming chapter will intimate the findings or

results of the survey.

71

CHAPTER 5

INDUSTRIAL SURVEY

5.1 Introduction

 The previous chapter contains the complete information related to the conduct of a

Systematic Literature Review (SLR) along with their findings. Moreover, contains complete

information related to the implementation of Grounded Theory and valuable conduct of the

Expert Review. Preliminarily, in numbers twenty-eight (28) factors are identified via smooth

conduct of SLR, during this phase the factors are also refined through the adoption of the data

encoding technique of grounded theory. After the successful completion of this process, the

refined list of factors was forwarded to the different experts in the domain for validation

purposes. Whereby, the worthy experts of the domains rectified the identified list of factors

and recommended their suggestions. To meet the core purpose of this chapter, the validated

list of factors is shared with the practitioners and industrial people, for the smooth conduct of

the empirical investigation through the conduct of an industrial survey about the positive

implications of these identified factors on the software architecture.

5.2 Industrial Survey Findings

An industrial survey was conducted to get the positive implications of the identified

list of factors on the software architecture. For the implementation of this, the guidelines of

Mark Kasunic [24] were used for the smooth conduct of the industrial survey. However, the

complete detail in terms of this conduct survey has already been elaborated on in chapter 3.

Whereby, each step under the guidelines is reported towards implementation. As this study is

most specifically about the twin peaks of the SDLC i.e. ‘Requirement Volatility’ and

‘Software Architecture’, therefore, to address the matter efficiently the industrial practitioners

or developers of this domain selected for participation in the survey on account of the target

audiences. In the very first step, the questionnaire was designed online through Google forms

and shared with the targeted audiences in January 2022. The survey is based on three different

sections, whereby section one contains the introductory part. While Section 2 is based on the

demographic section, the core purpose of this section is to get the demographic details of each

respondent in terms of their Name, Designation, Qualification, software development

experience, Organizational information, email id, etc.

72

Besides this, this section also obtained some additional information related to their

companies in terms of considered projects and names of projects most specifically to this

study domain. Moreover, this part also obtained the respondent's company demographics

information including company location, scope or level, staff, SPI certifications, and type of

companies. In the end, this section also gets the information related to the respondent (s)

companies care about the twin peaks of the SDLC i.e. ‘Requirement volatility’ and ‘software

architecture’. Then, section three of this survey is designed which contains the complete

details of the identified final list of factors, which are already been passed out through the

experts of the domain during the conduct of SLR. To achieve the goal, this list of factors is

placed in this section of the survey along with their descriptions for getting the positive

implications of each factor in the form of a 5 Likert Scale i.e. strongly agree to strongly

disagree. In the same context, the complete designed questionnaire is placed herewith at the

ends of the appendixes in Appendix-G.

5.2.1 Distribution of Respondent's Experiences based on Software

 Development

The graph shown below is representing the respondent’s software development

experience (in years) in current/ previous organizations. Whereby, 29.7% of respondents have

2 years of experience, and 20.9% of respondents have experience 3 years. While 19.8% of

respondents have experience of 5 years. 9.9% of respondents have experience of 6 years.

8.8% of respondents have experience of 4 years. 3.3% of respondents have experience of 7 to

8 years. However, 2.2% of the respondent have experience of 10 years.

Figure 5.1 Distribution of responders based on Experiences

73

5.2.2 Distribution of companies based on the study domain

 The below-drawn graph represented the distribution of companies based on the

study domain i.e. about twin peaks of the SDLC. Whereby, 80.2 % of companies responded

as ‘Yes’ in terms of considerations of the positive implications of requirements volatility on

Software Architecture. However, 19.8% of companies responded as ‘No’.

Figure 5.2 Distribution of Companies based on the study domain

5.2.3 Distribution of responses based on the Scope of the Company

The graph shown below represented the distribution of responses based on the scope

of the companies. Whereby, 53.8 % of responders companies are working on the scope of

‘National’ level and 46.2% of companies are working on the level of ‘Multi-National’.

Figure 5.3 Distribution of the company's responses based on the scope

74

5.2.4 Distribution of companies based on the working strength

The graph shown below represented the company's or organization's strength related to

the employed or working staff. Whereby, 44.0% of companies have a working strength of 20-

100. While 31.9% of organizations have a working strength greater than 100. However,

24.2% of companies have less than 20 working strength on account of employed staff.

 Figure 5.4 Distribution of companies based on the working strength.

5.2.5 Distribution of Companies based on SPI Certifications

 The graph shown below represented the complete detail in terms of the respondent

company/firm achieved SPI Certifications. Whereby, 59. 3% of respondent companies have

CMMI certifications. While 40.7% of respondent companies have ISO Certifications.

Figure 5.5 Distribution of company based on SPI Certifications

75

5.2.6 Distribution of respondent firms based on the type of development

The graph shown below represented the total count of respondent firms about their

type of software development or major concern. Accordingly, 11 companies are concerned

with related ‘Database development’, and 15 companies participating in ‘real-time system’

development. The 19 companies are working on the ‘Web Application’ development. While 6

firms have major concerns about the ‘Games development’. Moreover, 10 firms have major

concerns with ‘Multimedia Software. Besides this, 5 firms are working on the ‘Desktop

application’. In the same context, 7 firms are working on the development of ‘Graphic

Designing’ and another 7 on ‘System Software. However, the 6 firms have major concerns

with ‘Mobile Development’. However, 2 firms are playing their major roles in the back-end

development. While another 2 firms have major concerns with the ‘Data Analysis’.

Figure 5.6 Distribution of respondent firms based on the type of development

5.3 Result Analysis and Reporting

 To achieve the goal and proposed the solutions. This section of the study reported

the results of the positive implications of Requirement Volatility factors on the Software

Architecture. In the same context, the proposed results are based on the key points that how

much this identified list of factors contributes to their major roles during the development

process, more specifically in terms of their positive implications on the software architecture.

76

5.4 Positive Implications of Requirement Volatility Factors on the SW

 Architecture

 As mentioned earlier, the core purpose of this conduct of industrial survey is to

propose the positive implications of requirements volatility factors on the Software

Architecture. For this results are generated on basis of the Likert scale score from 1 to 5 i.e.

Strongly Agree 1, Agree 2, Neutral 3, Disagree 4, and Strongly Disagree 5.

5.4.1 Testing Results/Statistics

 For analysis purposes, this study used JMP statistical tool. Whereby, the results

are generated against the factors. Accordingly, this study focused to get information from

practitioners and industrial people regarding the positive implications of requirements

volatility factor on the Software Architecture. For implementation, the 5 Likert scales were

used (i.e. from Strongly Agree to Strongly Disagree). This study also tries to get the most

relevant practitioners to this study domain to get the most precise information from the

industry. As a result, 91 participants participated and submitted their valuable responses. In

forgoing this, the objective is achieved and this study contributes to the Software Engineering

Body of Knowledge. In the same context, practitioners and academicians can get the platform

for ongoing factors and their solutions in the field of Software Engineering. Moreover, the

suggestions of the practitioners or industrial people in the form of results generated via an

analysis tool along with the charts and frequency distribution tables, against each identified

factor are mentioned below.

5.4.1.1 Identified Frequency distribution of the factor ‘Software Defects’

 The practitioners gave their consent about this factor namely, ‘Software

Defects’. Accordingly, the results indicating the practitioner consents that 47% agreed and

accepted that positive implications are found against this factor. While 34% strongly agree

and 13% are neutral. However, the results against the rest of the two scales i.e. disagree and

strongly disagree are not accepted.

77

Figure 5.7 Frequency distribution against the factor Software Defects

5.4.1.2 Identified frequency of the factor ‘Resource Management’.

 The practitioners gave their consent about this factor namely, ‘Resource

Management. Accordingly, the results indicating the practitioner consents that 43% agreed

and accepted that positive implications are found against this factor. While 17% strongly

agree and 35% are neutral. However, the results against the rest of the two scales i.e. disagree

and strongly disagree are not accepted.

Figure 5.8 Frequency distribution against the factor Resource Management

5.4.1.3 Identified Frequency distribution of the factor ‘Knowledge’

 The practitioners gave their consent about this factor namely, ‘Knowledge’.

Accordingly, the results indicating the practitioner consents that 42% agreed and accepted that

78

positive implications are found against this factor. While 40% strongly agree and 16% are

neutral. However, no results were found against the rest of the two scales and treated as

‘NIL’.

Figure 5.9 Frequency distribution against the factor Knowledge

5.4.1.4 Identified frequency distribution of the factor ‘Communication Issues’

 The practitioners gave their responses about this factor namely,

‘Communication Issues’. Accordingly, the results indicating the practitioner consents that

40% agreed and accepted that positive implications are found against this factor. While 29%

strongly agree and 24% are neutral. Besides this, results against the scale strongly disagree are

not accepted. However, no results were found against the scale of disagree and treated as

‘NIL’.

Figure 5.10 Frequency distribution against the factor Communication Issues

5.4.1.5 Identified frequency distribution of the factor ‘Dependencies’

 The practitioners gave their responses about this factor namely,

‘Dependencies’. Accordingly, the results indicate the practitioner consents that 14% agreed

and accepted that positive implications are found against this factor. While 30% strongly

79

agree and 48% are neutral. However, results against the rest of the two scales are not

accepted.

Figure 5.11 Frequency distribution against the factor Dependencies

5.1.4.6 Identified frequency distribution of the factor ‘Traceability’

 The practitioners gave their responses about this factor namely, ‘Traceability’.

Accordingly, the results indicating the practitioner consents that 37% agreed and accepted that

positive implications are found against this factor. While 28% strongly agree and 32% are

neutral. Besides this, results against the scale of Disagree are not accepted. However, no

results were found against the scale of strongly disagree and treated as ‘NIL’.

Figure 5.12 Frequency distribution against the factor Traceability

5.1.4.7 Identified frequency distribution of the factor ‘Dynamic Business

 Environment’

 The practitioners gave their responses about this factor namely, ‘Dynamic

Business Environment’. Accordingly, the results indicating the practitioner consents that 36%

agreed and accepted that positive implications are found against this factor. While 30%

80

strongly agree and 26% are neutral. However, results against the rest of the two scales are not

accepted.

Figure 5.13 Frequency distribution against the factor Dynamic Business Environment

5.1.4.8 Identified frequency distribution of the factor ‘Stakeholder

 Synchronization’

 The practitioners gave their responses about this factor namely, ‘Stakeholder

Synchronization’. Accordingly, the results indicating the practitioner consents that 54%

agreed and accepted that positive implications are found against this factor. While 16%

strongly agree and 27% are neutral. Besides this, results against the scale disagree are not

accepted. However, no results found against the scale strongly disagree and are treated as

‘NIL’.

Figure 5.14 Frequency distribution against the factor Stakeholder Synchronization

81

5.1.4.9 Identified frequency distribution of the factor ‘Architecture’

 The practitioners gave their responses about this factor namely, ‘Architecture’.

Accordingly, the results indicating the practitioner consents that 43% agreed and accepted that

positive implications are found against this factor. While 28% strongly agree and 25% are

neutral. Besides this, results against the scale of disagreement are not accepted. However, no

results were found against the strongly disagree and treated as ‘NIL’.

Figure 5.15 Frequency distribution against the factor Architecture

5.1.4.10 Identified frequency distribution of the factor ‘Design Implementation’

 The practitioners gave their responses about this factor namely, ‘Design

Implementation’. Accordingly, the results indicating the practitioner consents that 32% agreed

and accepted that positive implications are found against this factor. While 24% strongly

agree, 31% are neutral and 10% disagree. However, no results were found against the scale of

strongly disagree and treated as ‘NIL’.

Figure 5.16 Frequency distribution against the factor Design Implementation

82

5.1.4.11 Identified frequency distribution of the factor ‘Organizational

 Leadership’

 The practitioners gave their responses about this factor namely, ‘Organization

Leadership’. Accordingly, the results indicate the practitioner’s consent, whereby, 49% agreed

and accepted that positive implications are found against this factor. While 17% strongly

agree 19% are neutral and 13% disagree. However, no results were found against the scale of

strongly disagree and treated as ‘NIL’.

Figure 5.17 Frequency distribution against the factor of Organizational Leadership

5.1.4.12 Identified frequency distribution of the factor ‘Adaption to Change’

 The practitioners gave their responses about this factor namely, ‘Adaption to

Change’. Accordingly, the results indicating the practitioner consents that 56% agreed and

accepted that positive implications are found against this factor. While 24% strongly agree

and 19% are neutral. However, no results were found against the rest of the two scales and

treated as ‘NIL’.

Figure 5.18 Frequency distribution against the factor Adaption to Change

83

5.1.4.13 Identified frequency distribution of the factor ‘SQW Maintenance’

 The practitioners gave their responses about this factor namely, ‘SQW

Maintenance’. Accordingly, the results indicating the practitioner consents that 34% agreed

and accepted that positive implications are found against this factor. The same, 34% strongly

agree and 31% neutral. However, no results were found against the rest of the two scales and

treated as ‘NIL’

Figure 5.19 Frequency distribution against the factor SQW Maintenance

5.1.4.14 Identified frequency distribution of the factor ‘Artefacts’

 The practitioners gave their responses about this factor namely, ‘Artefacts’.

Accordingly, the results indicating the practitioner consents that 47% agreed and accepted that

positive implications are found against this factor. While 34% strongly agree and 18% are

neutral. However, no results were found against the rest of the two scales and treated as

‘NIL’.

Figure 5.20 Frequency distribution against the factor Artefacts

84

5.1.4.15 Identified frequency distribution of the factor ‘Integration of Usage’

 The practitioners gave their responses about this factor namely, ‘Integration of

Usage’. Accordingly, the results indicate the practitioner consents that 64% agreed and

accepted that positive implications are found against this factor. While 8% strongly agree and

26% are neutral. However, no results were found against the rest of the two scales and treated

as ‘NIL’.

Figure 5.21 Frequency distribution against the factor Integration of Usage

5.1.4.16 Identified frequency distribution of the factor ‘Trade-off’

 The practitioners gave their responses about this factor namely, ‘Trade-off’.

Accordingly, the results indicating the practitioner consents that 39% agreed and accepted that

positive implications are found against this factor. While 25% strongly agree and 34% are

neutral. Besides this, results against the scale disagree are not accepted. However, no results

found against the scale strongly disagree and are treated as ‘NIL’.

Figure 5.22 Frequency distribution against the factor Trade-off

85

5.1.4.17 Identified frequency distribution of the factor ‘Code’

 The practitioners gave their responses about this factor namely, ‘Code’.

Accordingly, the results indicating the practitioner consents that 38% agreed and accepted that

positive implications are found against this factor. While 39% strongly agree and 19% are

neutral. Besides this, results against the scale disagree are not accepted. However, no results

found against the scale strongly disagree and are treated as ‘NIL’.

Figure 5.23 Frequency distribution against the factor Code

5.1.4.18 Identified frequency distribution of the factor ‘Technical Debt.’

 The practitioners gave their responses about this factor namely, ‘Technical

Debt’. Accordingly, the results indicate the practitioner consents that 41% agreed and

accepted that positive implications are found against this factor. While 23% strongly agree

and 27% are neutral. Besides this, results against the scale disagree are not accepted.

However, no results found against the scale strongly disagree and are treated as ‘NIL’.

Figure 5.24 Frequency distribution against the factor Technical Debt.

86

5.1.4.19 Identified frequency distribution of the factor ‘Human Behavior’

 The practitioners gave their responses about this factor namely, ‘Human

Behavior’. Accordingly, the results indicating the practitioner consents that 43% agreed and

accepted that positive implications are found against this factor. While 26% strongly agree

and 23% are neutral. However, results against the rest of the scales are not accepted.

 Figure 5.25 Frequency distribution against the factor Human Behavior

5.1.4.20 Identified frequency distribution of the factor ‘Team’

 The practitioners gave their responses about this factor namely, ‘Team’.

Accordingly, the results indicating the practitioner consents that 49% agreed and accepted that

positive implications are found against this factor. While 31% strongly agree and 12% are

neutral. Besides this, results against the scale of disagree are not accepted. However, no

results found against the scale strongly disagree and are treated as ‘NIL’.

Figure 5.26 Frequency distribution against the factor Team

87

5.1.4.21 Identified frequency distribution of the factor ‘Integration of Linkage’

 The practitioners gave their responses about this factor namely, ‘Integration of

Linkage’. Accordingly, the results indicating the practitioner consents that 36% agreed and

accepted that positive implications are found against this factor. While 34% strongly agree,

17% are neutral and 12% disagree. However, no results were found against the strongly

disagree and treated as ‘NIL’.

Figure 5.27 Frequency distribution against the factor Integration of Linkage

5.1.4.22 Identified frequency distribution of the factor ‘Documentation’

 The practitioners gave their responses about this factor namely,

‘Documentation’. Accordingly, the results indicating the practitioner consents that 58%

agreed and accepted that positive implications are found against this factor. While 17%

strongly agree and the same 17% are neutral. Besides this, results against the disagree are not

accepted. However, no results found against the scale strongly disagree and are treated as

‘NIL’.

Figure 5.28 Frequency distribution against the factor Documentation

88

5.1.4.23 Identified frequency distribution of the factor ‘Architectural Complexity’

 The practitioners gave their responses about this factor namely, ‘Architectural

Complexity’. Accordingly, the results indicating the practitioner consents that 47% agreed

and accepted that positive implications are found against this factor. While 16% strongly

agree and 36% are neutral. However, no results were found against the rest of the scales and

treated as ‘NIL’.

Figure 5.29 Frequency distribution against the factor Architectural Complexity

5.1.4.24 Identified frequency distribution of the factor ‘Requirement Volatility’

 The practitioners gave their responses about this factor namely, ‘Requirement

Volatility’. Accordingly, the results indicating the practitioner consents that 38% agreed and

accepted that positive implications are found against this factor. While 20% strongly agree

and 39% are neutral. Besides this, results against the scale disagree are not accepted.

However, no results were found against the strongly disagree and treated as ‘NIL’.

Figure 5.30 Frequency distribution against the factor Requirement Volatility

89

5.1.4.25 Identified frequency distribution of the factor ‘Quality Assurance’

 The practitioners gave their responses about this factor namely, ‘Quality

Assurance’. Accordingly, the results indicating the practitioner consents that 42% agreed and

accepted that positive implications are found against this factor. While 35% strongly agree

and 20% are neutral. Besides this, results against the scale disagree are not accepted.

However, no results found against the scales strongly disagree and are treated as ‘NIL’.

Figure 5.31 Frequency distribution against the factor Quality Assurance

5.1.4.26 Identified frequency distribution of the factor ‘Security’

 The practitioners gave their responses about this factor namely, ‘Security’.

Accordingly, the results indicating the practitioner consents that 48% agreed and accepted that

positive implications are found against this factor. While 37% strongly agree and 14% are

neutral. However, no results were found against the rest of the two scales and treated as

‘NIL’.

Figure 5.32 Frequency distribution against the factor Security

90

5.1.4.27 Identified frequency distribution of the factor ‘Self-Healing Mechanism’.

 The practitioners gave their responses about this factor namely, ‘Self-Healing

Mechanism’. Accordingly, the results indicating the practitioner consents that 51% agreed and

accepted that positive implications are found against this factor. While 21% strongly agree

and 26% are neutral. However, no results were found against the rest of the two scales and

treated as ‘NIL’.

Figure 5.33 Frequency distribution against the factor Self-Healing Mechanism

5.4.2 Analysis of Survey

The results of the conducted survey in terms of collected responses are tabulated below:

Table 5.1 Findings of the Survey

No. Factor Strongly

Agree

(1)

Agree

(2)

Neutral

(3)

Disagree

(4)

Strongly

Disagree

(5)

Total

Responses

(91)

1. Software Defects 31*1=31 43*2=86 12*3=36 2*4=8 3*5=15 176

2. Resource Management 16*1=16 40*2=80 32*3=96 2*4=8 1*5=5 205

3. Knowledge 37*1=37 39*2=78 15*3=45 0*4=0 0*5=0 160

4. Communication Issues 27*1=27 37*2=74 22*3=66 0*4=0 5*5=25 192

5. Dependencies 28*1=28 13*2=26 44*3=132 1*4=4 5*5=25 215

6. Traceability 26*1=26 34*2=68 30*3=90 1*4=4 0*5=0 188

7.
Dynamic Business

Environment

28*1=28 33*2=64 24*3=72 1*4=4 5*5=25 193

8. Stakeholder Synchronization 15*1=15 50*2=100 25*3=75 1*4=4 0*5=0 194

9. Architecture 26*1=26 40*2=80 23*3=69 2*4=8 0*5=0 183

10. Design Implementation 22*1=22 30*2=60 29*3=87 10*4=40 0*5=0 209

11. Organizational Leadership 16*1=16 45*2=90 18*3=54 12*4=48 0*5=0 208

12. Adaption to Change 22*1=22 51*2=102 18*3=54 0*4=0 0*5=0 178

13. SQW Maintenance 31*1=31 31*2=62 29*3=87 0*4=0 0*5=0 180

14. Artefacts 31*1=31 43*2=86 17*3=51 0*4=0 0*5=0 168

15. Integration of Usage 8*1=8 59*2=118 24*3=72 0*4=0 0*5=0 198

91

5.4.3 Survey Results from Weightage Values

To consider the responses, the weightage value of the survey results based on the

acceptance validity is tabulated below:

Table 5.2 Accepted/Rejected Values

No. Factor Strongly

Agree

(1)

Agree

(2)

Neutral

(3)

Disagree

(4)

Strongly

Disagree

(5)

Total

Responses

(91)

16. Trade-Off 23*1=23 36*2=72 31*3=93 1*4=4 0*5=0 192

17. Code 36*1=36 35*2=70 18*3=54 2*4=8 0*5=0 168

18. Technical Debt. 21*1=21 38*2=76 25*3=75 7*4=28 0*5=0 200

19. Human Behavior 24*1=24 40*2=80 21*3=63 1*4=4 5*5=25 196

20. Team 29*1=29 45*2=90 11*3=33 6*4=24 0*5=0 179

21. Integration of Linkage 31*1=31 33*2=64 16*3=48 11*4=44 0*5=0 187

22. Documentation 16*1=16 53*2=106 16*3=48 6*4=24 0*5=0 194

23. Architectural Complexity 15*1=15 43*2=86 33*3=99 0*4=0 0*5=0 200

24. Requirement Volatility 19*1=19 35*2=70 36*3=108 1*4=4 0*5=0 201

25. Quality Assurance 32*1=32 39*2=78 19*3=57 1*4=4 0*5=0 171

26. Security 34*1=34 44*2=88 13*3=39 0*4=0 0*5=0 161

27. Self-Healing Mechanism 20*1=20 47*2=94 24*3=72 0*4=0 0*5=0 186

Sr No. Factor Weightage

Values

AvgWeightage

Responses

Status

1. Software Defects 176 1.9340 Accepted

2. Resource Management 205 2.2528 Accepted

3. Knowledge 160 1.7582 Accepted

4. Communication Issues 192 2.1098 Accepted

5. Dependencies 215 2.3627 Accepted

6. Traceability 188 2.0659 Accepted

7. Dynamic Business Environment 193 2.1209 Accepted

8. Stakeholder Synchronization 194 2.1319 Accepted

9. Architecture 183 2.0109 Accepted

10. Design Implementation 209 2.2970 Accepted

11. Organizational Leadership 208 2.2857 Accepted

12. Adaption to Change 178 1.9560 Accepted

13. SQW Maintenance 180 1.978 Accepted

14. Artifacts 168 1.8461 Accepted

15. Integration of Usage 198 2.1758 Accepted

16. Trade-Off 192 2.1098 Accepted

17. Code 168 1.8462 Accepted

18. Technical Debt. 200 2.1978 Accepted

19. Human Behavior 196 2.1538 Accepted

20. Team 179 1.9670 Accepted

21. Integration of Linkage 187 2.0549 Accepted

22. Documentation 194 2.1318 Accepted

23. Architectural Complexity 200 2.1978 Accepted

92

5.5 Positive Implications of identified factors (from the top level to

 bottom)

The survey results intimated the positive implications of the requirements

volatility factors. The core purpose of this section is to represent the identified factors in

ascending order from very higher to lower levels based on the frequency of the factor

distribution analysis, respectively.

Table 5.3 Positive Implications of factors from the top level to bottom

Sr No. Factor Weightage

Values

AvgWeightage

Responses

Status

24. Requirement Volatility 201 2.2088 Accepted

25. Quality Assurance 171 1.8791 Accepted

26. Security 161 1.7692 Accepted

27. Self-Healing Mechanism 186 2.044 Accepted

Sr

No.

Factor Freq. Weightage

Implications Level

(Percentage)

1. Adaption to Change 73 68%

2. Integration of Usage 67 68%

3. Documentation 69 67%

4. Security 78 67%

5. Software Defects 74 64%

6. Artifacts 74 64%

7. Team 74 64%

8. Stakeholder Synchronization 65 62%

9. Self-Healing Mechanism 67 62%

10. Quality Assurance 71 60%

11. Knowledge 76 59%

12. Organizational Leadership 61 58%

13. Code 53 58%

14. Architecture 66 57%

15. Human Behavior 64 56%

16. Architectural Complexity 58 55%

17. Technical Debt. 59 53%

18. Integration of Linkage 64 53%

19. Resource Management 56 52%

20. Communication Issues 64 52%

21. Trade-Off 59 52%

22. Traceability 60 51%

23. Dynamic Business Environment 61 51%

24. SQW Maintenance 62 51%

25. Requirement Volatility 54 48%

26. Design Implementation 52 44%

27. Dependencies 41 29%

93

 This table indicated the positive implications of identified factors. Where, ten (10)

factors are founded in the range of 60%- 68%, fourteen (14) factors are founded in the range

of 51%-59%, and three (03) factors are founded in the range of 29%- 48%.

5.6 Summary of the chapter

 This chapter discussed the complete details related to the findings or results of the

conducted industrial survey. As a result, the targeted objective has been achieved and the task

of the RQ2 accomplished. Whereby, the core purpose of this chapter is to identify the positive

implications of requirement vitality on the software architecture. Accordingly, the positive

implications of the identified factor from the top level to the bottom are reported in this study.

94

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Introduction

This chapter reported the results and findings of this research. Where, this study

intimated the accomplishments, especially in the context of their research questions (i.e. RQ1

and RQ2) and research objectives. Moreover, the major role of this study was to contribute to

the existing Software Engineering Body of Knowledge (SEBOK) and especially the

Requirement Engineering Body of Knowledge (REBOK). Accordingly, proposed the positive

implications of requirement volatility factors on the software architecture for practitioners,

software engineers, and developers. In the same context, this study contains complete

information in terms of their contributions, limitations, and future work.

6.2 Contributions of the Study

As mentioned above, to meet the basic objectives and goals of this conduct of

research, this study carried out the two research questions i.e. RQ1 and RQ2. To meet the

objective of the RQ1, this study conducted the Systematic Literature Review (SLR) and for

smooth conduction used the most popular guidelines of the Kitchenam [23] on account of the

used protocol. Accordingly, at the initial phase, this study selected the eighty-three (83)

primary studies from the different four digital libraries/resources or electronic databases i.e.

IEEE Xplorer, Willey Online Digital Library, Science Direct, and ACM Digital Library. As a

result, this study identified a list of twenty-seven (27) requirement volatility factors related to

the software architecture. However, to better shape the identified list of factors, the identified

information passed through the different stages during this phase of SLR conduction. For

implementation, this study conducted the ‘Grounded Theory’, during this the identified list of

factors was refined through the further multiple stages, whereby, the constructs are generated

through the ‘data encoding technique’ and after execution of the ‘implicit/explicit removal’,

this study gets the refined list of factors. Moreover, the identified list of factors is validated

through the conduct of the ‘Expert Review’. In which, the Expert of the domain evaluated the

work and produced their suggestions and recommendations. After the successful conduct of

the SLR, this research accomplished the first objective of this study.

95

To meet the objective of the RQ2, this study conducted an industrial survey. The core

purpose of this conduct of industrial survey is to empirically investigate the positive

implications of the requirement volatility factors on the software architecture. In the same

context, this study received a total number of 91 responses from practitioners and industrial

people. As a result, this study proposed the positive implications of factors from its top level

to the down level along with their positive implications in the shape of hierarchy.

 6.3 Threats Validity

 To streamline the proposed solutions of this research study, there is an essential

need to focus on its threat validity, as well. In the same context, at the initial step, this study

most carefully focused on the primary selected studies in terms of their publication related to

the published and unpublished material from the time frame 2010-2020. In this regard, this

study only selected that published material. However, forthcoming publications or accepted

manuscripts are also considered. Moreover, premature conferences, proceedings, or newsletter

material are not considered.

 6.4 Future Work

 This study was stickier to find out the positive implications of requirement

volatility factors on the software architecture. In the future, we may conduct a comparison-

based study related to this study domain, whereas, we may get the complete analysis in terms

of their positive as well as negative implications (if any).

 6.5 Conclusion

 Requirements volatility is a vital part of the Requirement Engineering process.

Here, the term volatility indicates its fragile nature and also intimate about its positive worth,

to proceed with upcoming changes. Because, requirements are needed to be added, deleted,

and modified throughout the SW development process. On the other hand, software

architecture provides a complete vision of the system that is going to build. This phenomenon

indicates the close connection of these twin peaks of SDLC. However, prior studies intimated

about requirements volatility factors and their causes but none of them intimated about its

positive implications on SW architecture. This study fulfills this gap in three different phases,

whereby, phase 1 is conducted to identify all possible requirements volatility factors related to

the software architecture through SLR conduction. In phase 2, all the identified factors are

validated by the experts of the domain through the conduct of an expert review. In phase 3,

96

this study proposed the positive implications of these identified factors on software

architecture through the conduct of an industrial survey. This study explored the 83 primary

studies, as a result, proposed the 27 factors and acknowledges their positive implications on

software architecture. In addition, the identified factors are also categorized into three

different categories i.e. ‘Internal’, ‘External’, and ‘both’. Whereas, only 13 factors were found

as internal factors. However, most of the factors are based on internal as well as external,

both. Accordingly, this study also contributes to the existing Software Engineering Body of

Knowledge and Requirement Engineering Body of Knowledge.

97

REFERENCES

[1] S. Dasanayake, S. Aaramaa, J. Markkula, and M. Oivo, “Impact of requirements

volatility on software architecture: How do software teams keep up with ever-changing

requirements?,” J. Softw. Evol. Process, vol. 31, no. 6, pp. 1–19, 2019.

[2] A. A. Khan, “Systematic literature review and empirical investigation of motivators for

requirements change management process in global software development,” no. April,

2019.

[3] M. Zanoni, F. Perin, F. A. Fontana, and G. Viscusi, “Pattern detection for conceptual

schema recovery in data-intensive systems,” J. Softw. Evol. Process, vol. 26, no. 12,

pp. 1172–1192, 2014.

[4] M. A. Akbar, J. Sang, A. A. Khan, and S. Hussain, “Investigation of the requirements

change management challenges in the domain of global software development,” J.

Softw. Evol. Process, vol. 31, no. 10, pp. 1–22, 2019.

[5] S. Aaramaa, S. Dasanayake, M. Oivo, J. Markkula, and S. Saukkonen, “Requirements

volatility in software architecture design: An exploratory case study,” ACM Int. Conf.

Proceeding Ser., vol. Part F1287, pp. 40–49, 2017.

[6] H. Sadia, S. Q. Abbas, and M. Faisal, “Volatile requirement prioritization: A fuzzy

based approach,” Int. J. Eng. Adv. Technol., vol. 8, no. 5, pp. 2467–2472, 2019.

[7] R. Valerdi and M. Pe, “Characterizing the Impact of Requirements Volatility on

Systems Engineering Effort,” 2014.

[8] M. W. Grenn, S. Sarkani, and T. Mazzuchi, “A Theory of Information Quality and its

Implementation in Systems Engineering,” IEEE Syst. J., vol. 9, no. 4, pp. 1129–1138,

2015.

[9] R. V. M.P.Singh and Abstract-, “Requirements Volatility in Software Development

Process,” Int. J. Soft Comput. Eng., vol. 2, no. 4, pp. 259–264, 2012.

[10] A. Goknil, I. Kurtev, and K. Van Den Berg, “Generation and validation of traces

between requirements and architecture based on formal trace semantics,” J. Syst.

Softw., vol. 88, no. 1, pp. 112–137, 2014.

[11] H. P. Breivold, I. Crnkovic, and M. Larsson, “Software architecture evolution through

evolvability analysis,” J. Syst. Softw., vol. 85, no. 11, pp. 2574–2592, 2012.

[12] Y. Fu, M. Li, and F. Chen, “Impact propagation and risk assessment of requirement

changes for software development projects based on design structure matrix,” Int. J.

Proj. Manag., vol. 30, no. 3, pp. 363–373, 2012.

[13] Y. C. Cavalcanti, I. D. C. MacHado, P. A. D. M. S. Neto, and E. S. De Almeida,

“Towards semi-automated assignment of software change requests,” J. Syst. Softw.,

vol. 115, pp. 82–101, 2016.

[14] A. Ahmad, P. Jamshidi, and C. Pahl, “Classification and comparison of architecture

evolution reuse knowledge - A systematic review,” J. Softw. Evol. Process, vol. 26, no.

7, pp. 654–691, 2014.

98

[15] C. López, V. Codocedo, H. Astudillo, and L. M. Cysneiros, “Bridging the gap between

software architecture rationale formalisms and actual architecture documents: An

ontology-driven approach,” Sci. Comput. Program., vol. 77, no. 1, pp. 66–80, 2012.

[16] R. Weinreich and G. Buchgeher, “Towards supporting the software architecture life

cycle,” J. Syst. Softw., vol. 85, no. 3, pp. 546–561, 2012.

[17] X. Liu, L. G. Huang, A. Egyed, and J. Ge, “Do code data sharing dependencies support

an early prediction of software actual change impact set?,” J. Softw. Evol. Process, vol.

30, no. 11, pp. 16–26, 2018.

[18] F. Tian, T. Wang, P. Liang, C. Wang, A. A. Khan, and M. A. Babar, “The impact of

traceability on software maintenance and evolution: A mapping study,” J. Softw. Evol.

Process, no. July, pp. 1–31, 2021.

[19] M. P. Singh and R. Vyas, “Requirements Volatility in Software Development Process,”

Int. J. Soft Comput. Eng., vol. 2, no. 4, pp. 259–264, 2012.

[20] J. A. Miller, R. Ferrari, and N. H. Madhavji, “An exploratory study of architectural

effects on requirements decisions,” J. Syst. Softw., vol. 83, no. 12, pp. 2441–2455,

2010.

[21] J. O. Johanssen, A. Kleebaum, B. Paech, and B. Bruegge, “Continuous software

engineering and its support by usage and decision knowledge: An interview study with

practitioners,” J. Softw. Evol. Process, vol. 31, no. 5, pp. 1–25, 2019.

[22] A. AbuHassan, M. Alshayeb, and L. Ghouti, “Software smell detection techniques: A

systematic literature review,” J. Softw. Evol. Process, vol. 33, no. 3, pp. 1–48, 2021.

[23] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman,

“Systematic literature reviews in software engineering – A systematic literature

review,” Inf. Softw. Technol., vol. 51, no. 1, pp. 7–15, 2009.

[24] M. Kasunic, “Designing an Effective Survey,” no. September, 2005.

[25] M. Hamill and K. Goseva-Popstojanova, “Exploring the missing link: An empirical

study of software fixes,” Softw. Test. Verif. Reliab., vol. 24, no. 8, pp. 684–705, 2014.

[26] R. Haesevoets, D. Weyns, and T. Holvoet, “Architecture-centric support for adaptive

service collaborations,” ACM Trans. Softw. Eng. Methodol., vol. 23, no. 1, pp. 1–40,

2014.

[27] L. Briand, D. Falessi, S. Nejati, M. Sabetzadeh, and T. Yue, “Traceability and sysml

design slices to support safety inspections: A controlled experiment,” ACM Trans.

Softw. Eng. Methodol., vol. 23, no. 1, 2014.

[28] S. Anwer, L. Wen, Z. Wang, and S. Mahmood, “Comparative Analysis of Requirement

Change Management Challenges between in-House and Global Software Development:

Findings of Literature and Industry Survey,” IEEE Access, vol. 7, no. 2017, pp.

116585–116611, 2019.

[29] C. Orellana, M. M. Villegas, and H. Astudillo, “Assessing architectural patterns trade-

offs using moment-based pattern taxonomies,” Proc. - 2019 45th Lat. Am. Comput.

Conf. CLEI 2019, 2019.

99

[30] M. Famelis and M. Chechik, “Managing Design-Time Uncertainty,” no. March, pp.

179–179, 2017.

[31] L. Chen, L. Huang, C. Li, and W. Luo, “Software architecture matching by meta-model

extension and refinement,” Proc. - Asia-Pacific Softw. Eng. Conf. APSEC, vol. 1, pp.

422–427, 2012.

[32] P. Gaubatz, I. Lytra, and U. Zdun, “Automatic enforcement of constraints in real-time

collaborative architectural decision making,” J. Syst. Softw., vol. 103, pp. 128–149,

2015.

[33] G. Borrego, A. L. Morán, R. R. Palacio, A. Vizcaíno, and F. O. García, “Towards a

reduction in architectural knowledge vaporization during agile global software

development,” Inf. Softw. Technol., vol. 112, pp. 68–82, 2019.

[34] H. Unphon and Y. Dittrich, “Software architecture awareness in long-term software

product evolution,” J. Syst. Softw., vol. 83, no. 11, pp. 2211–2226, 2010.

[35] H. Samin, “Priority-Awareness of Non-Functional Requirements under Uncertainty,”

Proc. IEEE Int. Conf. Requir. Eng., vol. 2020-Augus, pp. 416–421, 2020.

[36] S. Jayatilleke and R. Lai, “A method of specifying and classifying requirements

change,” Proc. Aust. Softw. Eng. Conf. ASWEC, pp. 175–180, 2013.

[37] M. Mannion and H. Kaindl, “Product line requirements reuse based on variability

management,” Proc. - Asia-Pacific Softw. Eng. Conf. APSEC, vol. 2, pp. 148–149,

2012.

[38] J. Li et al., “An initial evaluation of requirements dependency types in change

propagation analysis,” IET Semin. Dig., vol. 2012, no. 1, pp. 62–71, 2012.

[39] L. Aladib and S. P. Lee, “Pattern detection and design rationale traceability: An

integrated approach to software design quality,” IET Softw., vol. 13, no. 4, pp. 249–

259, 2019.

[40] C. Trubiani, A. Ghabi, and A. Egyed, “Exploiting traceability uncertainty between

software architectural models and extra-functional results,” J. Syst. Softw., vol. 125, pp.

15–34, 2017.

[41] B. Wang, R. Peng, Y. Li, H. Lai, and Z. Wang, “Requirements traceability technologies

and technology transfer decision support: A systematic review,” J. Syst. Softw., vol.

146, pp. 59–79, 2018.

[42] K. Welsh, P. Sawyer, and N. Bencomo, “Towards requirements aware systems: Run-

time resolution of design-time assumptions,” 2011 26th IEEE/ACM Int. Conf. Autom.

Softw. Eng. ASE 2011, Proc., pp. 560–563, 2011.

[43] S. A. Busari and E. Letier, “RADAR: A Lightweight Tool for Requirements and

Architecture Decision Analysis,” Proc. - 2017 IEEE/ACM 39th Int. Conf. Softw. Eng.

ICSE 2017, pp. 552–562, 2017.

[44] S. A. Busari, “Towards search-based modelling and analysis of requirements and

architecture decisions,” ASE 2017 - Proc. 32nd IEEE/ACM Int. Conf. Autom. Softw.

Eng., pp. 1026–1029, 2017.

100

[45] U. Van Heesch, P. Avgeriou, and R. Hilliard, “A documentation framework for

architecture decisions,” J. Syst. Softw., vol. 85, no. 4, pp. 795–820, 2012.

[46] T. Rocha Silva, M. Winckler, and H. Trætteberg, “Ensuring the Consistency between

User Requirements and Task Models: A Behavior-Based Automated Approach,” Proc.

ACM Human-Computer Interact., vol. 4, no. EICS, 2020.

[47] C. J. Neill, R. S. Sangwan, and N. H. Kilicay-Ergin, “A Prescriptive Approach to

Quality-Focused System Architecture,” IEEE Syst. J., vol. 11, no. 4, pp. 1994–2005,

2015.

[48] J. B. Corbets, C. J. Willy, and J. E. Bischoff, “Evaluating System Architecture Quality

and Architecting Team Performance Using Information Quality Theory,” IEEE Syst. J.,

vol. 12, no. 2, pp. 1139–1147, 2018.

[49] A. Mohsin, N. K. Janjua, S. M. S. Islam, and M. A. Babar, “SAM-SoS: A stochastic

software architecture modeling and verification approach for complex system-of-

systems,” IEEE Access, vol. 8, pp. 177580–177603, 2020.

[50] M. Galster, A. Eberlein, and L. Jiang, “Structuring software requirements for

architecture design,” Proc. Int. Symp. Work. Eng. Comput. Based Syst., pp. 119–128,

2013.

[51] L. Shen, X. Peng, and W. Zhao, “Quality-driven self-adaptation: Bridging the gap

between requirements and runtime architecture by design decision,” Proc. - Int.

Comput. Softw. Appl. Conf., pp. 185–194, 2012.

[52] S. A. Ebad and M. A. Ahmed, “Measuring stability of object-oriented software

architectures,” IET Softw., vol. 9, no. 3, pp. 76–82, 2015.

[53] D. Selva, B. Cameron, and E. Crawley, “Patterns in System Architecture Decisions,”

Syst. Eng., vol. 19, no. 6, pp. 477–497, 2016.

[54] C. C. Venters et al., “Software sustainability: Research and practice from a software

architecture viewpoint,” J. Syst. Softw., vol. 138, pp. 174–188, 2018.

[55] P. Potena, “Optimization of adaptation plans for a service-oriented architecture with

cost, reliability, availability and performance tradeoff,” J. Syst. Softw., vol. 86, no. 3,

pp. 624–648, 2013.

[56] M. Razavian, B. Paech, and A. Tang, “Empirical research for software architecture

decision making: An analysis,” J. Syst. Softw., vol. 149, pp. 360–381, 2019.

[57] V. Cortellessa, R. Mirandola, and P. Potena, “Managing the evolution of a software

architecture at minimal cost under performance and reliability constraints,” Sci.

Comput. Program., vol. 98, no. P4, pp. 439–463, 2015.

[58] B. J. Williams and J. C. Carver, “Characterizing software architecture changes: A

systematic review,” Inf. Softw. Technol., vol. 52, no. 1, pp. 31–51, 2010.

[59] H. P. Breivold, I. Crnkovic, and M. Larsson, “A systematic review of software

architecture evolution research,” Inf. Softw. Technol., vol. 54, no. 1, pp. 16–40, 2012.

[60] P. Liang, A. Jansen, P. Avgeriou, A. Tang, and L. Xu, “Advanced quality prediction

101

model for software architectural knowledge sharing,” J. Syst. Softw., vol. 84, no. 5, pp.

786–802, 2011.

[61] C. Yang, P. Liang, and P. Avgeriou, “A survey on software architectural assumptions,”

J. Syst. Softw., vol. 113, pp. 362–380, 2016.

[62] C. Yang, P. Liang, and P. Avgeriou, “Evaluation of a process for architectural

assumption management in software development,” Sci. Comput. Program., vol. 168,

no. August, pp. 38–70, 2018.

[63] H. Song et al., “Supporting runtime software architecture: A bidirectional-

transformation- based approach,” J. Syst. Softw., vol. 84, no. 5, pp. 711–723, 2011.

[64] L. De Silva and D. Balasubramaniam, “Controlling software architecture erosion: A

survey,” J. Syst. Softw., vol. 85, no. 1, pp. 132–151, 2012.

[65] P. Y. Reyes-Delgado, M. Mora, H. A. Duran-Limon, L. C. Rodríguez-Martínez, R. V.

O’Connor, and R. Mendoza-Gonzalez, “The strengths and weaknesses of software

architecture design in the RUP, MSF, MBASE and RUP-SOA methodologies: A

conceptual review,” Comput. Stand. Interfaces, vol. 47, pp. 24–41, 2016.

[66] J. Gonzalez-Huerta, E. Insfran, S. Abrahão, and G. Scanniello, “Validating a model-

driven software architecture evaluation and improvement method: A family of

experiments,” Inf. Softw. Technol., vol. 57, no. 1, pp. 405–429, 2015.

[67] D. Falessi, G. Cantone, R. Kazman, and P. Kruchten, “Decision-making techniques for

software architecture design: A comparative survey,” ACM Comput. Surv., vol. 43, no.

4, pp. 1–28, 2011.

[68] N. Bencomo, J. Whittle, P. Sawyer, A. Finkelstein, and E. Letier, “Requirements

reflection: Requirements as runtime entities,” Proc. - Int. Conf. Softw. Eng., vol. 2, pp.

199–202, 2010.

[69] A. Egyed, “Automatically detecting and tracking inconsistencies in software design

models,” IEEE Trans. Softw. Eng., vol. 37, no. 2, pp. 188–203, 2011.

[70] K. Welsh, P. Sawyer, and N. Bencomo, “Run-time resolution of uncertainty,” Proc.

2011 IEEE 19th Int. Requir. Eng. Conf. RE 2011, pp. 355–356, 2011.

[71] K. D. Evensen, “Reducing uncertainty in architectural decisions with AADL,” Proc.

Annu. Hawaii Int. Conf. Syst. Sci., pp. 1–9, 2011.

[72] P. Araújo-de-Oliveira, F. Durán, and E. Pimentel, “A procedural and flexible approach

for specification, modeling, definition, and analysis for self-adaptive systems,” Softw. -

Pract. Exp., vol. 51, no. 6, pp. 1387–1415, 2021.

[73] E. Stachtiari, A. Mavridou, P. Katsaros, S. Bliudze, and J. Sifakis, “Early validation of

system requirements and design through correctness-by-construction,” J. Syst. Softw.,

vol. 145, pp. 52–78, 2018.

[74] H. Christiaans and R. A. Almendra, “Accessing decision-making in software design,”

Des. Stud., vol. 31, no. 6, pp. 641–662, 2010.

[75] D. Falessi, L. C. Briand, G. Cantone, R. Capilla, and P. Kruchten, “The value of design

102

rationale information,” ACM Trans. Softw. Eng. Methodol., vol. 22, no. 3, pp. 1–32,

2013.

[76] Y. Zheng, C. Cu, and R. N. Taylor, “Maintaining architecture-implementation

conformance to support architecture centrality: From single system to product line

development,” ACM Trans. Softw. Eng. Methodol., vol. 27, no. 2, 2018.

[77] J. L. De La Vara, M. Borg, K. Wnuk, and L. Moonen, “An Industrial Survey of Safety

Evidence Change Impact Analysis Practice,” IEEE Trans. Softw. Eng., vol. 42, no. 12,

pp. 1095–1117, 2016.

[78] A. Molesini, A. Garcia, C. von Flach Garcia Chavez, and T. V. Batista, “Stability

assessment of aspect-oriented software architectures: A quantitative study,” J. Syst.

Softw., vol. 83, no. 5, pp. 711–722, 2010.

[79] T. Haitzer, E. Navarro, and U. Zdun, Reconciling software architecture and source

code in support of software evolution, vol. 123. Elsevier Inc., 2017.

[80] R. Kazman, M. Gagliardi, and W. Wood, “Scaling up software architecture analysis,”

J. Syst. Softw., vol. 85, no. 7, pp. 1511–1519, 2012.

[81] E. Eshraghian and V. Rafe, “Performance measurement of models specified through

component-based software architectural styles,” Meas. J. Int. Meas. Confed., vol. 73,

pp. 372–383, 2015.

[82] S. Ghahremani, H. Giese, and T. Vogel, “Improving Scalability and Reward of Utility-

Driven Self-Healing for Large Dynamic Architectures,” ACM Trans. Auton. Adapt.

Syst., vol. 14, no. 3, 2020.

[83] D. Crawford, “Technical correspondence,” Commun. ACM, vol. 36, no. 11, p. 18, 1993.

[84] Nicoletti, Matias, Silvia Schiaffino, and J. Andres Diaz‐Pace. "An optimization‐based

tool to support the cost‐effective production of software architecture

documentation." Journal of Software: Evolution and Process 27, no. 9 (2015).

[85] Wnuk, Krzysztof, Jaap Kabbedijk, Sjaak Brinkkemper, Björn Regnell, and David

Callele. "Exploring factors affecting decision outcome and lead time in large‐scale

requirements engineering." Journal of software: Evolution and Process 27, no. 9

(2015).

[86] Selva, Daniel, Bruce Cameron, and Ed Crawley. "Patterns in system architecture

decisions." Systems Engineering 19, no. 6 (2016).

[87] Dorn, Christoph, and Richard N. Taylor. "Analyzing runtime adaptability of

collaboration patterns." Concurrency and Computation: Practice and Experience 27,

no. 11 (2015).

[88] Mannaert, Herwig, Jan Verelst, and Kris Ven. "Towards evolvable software

architectures based on systems theoretic stability." Software: Practice and

Experience 42, no. 1 (2012).

[89] Lagerström, Robert, Ulf Sporrong, and Anders Wall. "Increasing software development

efficiency and maintainability for complex industrial systems–A case study." Journal

of Software: Evolution and Process 25, no. 3 (2013).

103

[90] Ben Charrada, Eya, Anne Koziolek, and Martin Glinz. "Supporting requirements

update during software evolution." Journal of Software: Evolution and Process 27, no.

3 (2015).

[91] Janes, Andrea, Tadas Remencius, Alberto Sillitti, and Giancarlo Succi. "Managing

changes in requirements: an empirical investigation." Journal of software: evolution

and process 25, no. 12 (2013).

[92] Habhouba, Dounia, Soumaya Cherkaoui, and Alain Desrochers. "Decision-making

assistance in engineering-change management process." IEEE Transactions on

Systems, Man, and Cybernetics, Part C (Applications and Reviews) 41, no. 3 (2010).

104

APPENDIX-A

Table A: THE LIST OF DESIGNED SEARCH STRINGS FOR CONDUCT OF SLR.

Sr No. Search Strings

1. (((Requirement) AND volatility) AND “Software architecture”)

2. (((Requirement) AND volatility) AND “Software design”)

3. (((Requirement) AND volatility) AND “Software structure”)

4. (((Requirement) AND volatility) AND “Software construction”)

5. (((Requirement) AND volatility) AND “Software building”)

6. (((Requirement) AND change) AND “Software architecture”)

7. (((Requirement) AND change) AND “Software design”)

8. (((Requirement) AND change) AND “Software structure”)

9. (((Requirement) AND change) AND “Software construction”)

10. (((Requirement) AND change) AND “Software building”)

11. (((Requirement) AND changeability) AND “Software architecture”)

12. (((Requirement) AND changeability) AND “Software design”)

13. (((Requirement) AND changeability) AND “Software structure”)

14. (((Requirement) AND changeability) AND “Software construction”)

15. (((Requirement) AND changeability) AND “Software building”)

16. (((Requirement) AND uncertainty) AND “Software architecture”)

17. (((Requirement) AND uncertainty) AND “Software design”)

18. (((Requirement) AND uncertainty) AND “Software structure”)

19. (((Requirement) AND uncertainty) AND “Software construction”)

20. (((Requirement) AND uncertainty) AND “Software building”)

21. (((Requirement) AND unstable) AND “Software architecture”)

22. (((Requirement) AND unstable) AND “Software design”)

23. (((Requirement) AND unstable) AND “Software structure”)

24. (((Requirement) AND unstable) AND “Software construction”)

25. (((Requirement) AND unstable) AND “Software building”)

26. (((Requirement) AND inconsistent) AND “Software architecture”)

27. (((Requirement) AND inconsistent) AND “Software design”)

28. (((Requirement) AND inconsistent) AND “Software structure”)

29. (((Requirement) AND inconsistent) AND “Software construction”)

30. (((Requirement) AND inconsistent) AND “Software building”)

31. (((Demand) AND volatility) AND “Software architecture”)

32. (((Demand) AND volatility) AND “Software design”)

33. (((Demand) AND volatility) AND “Software structure”)

34. (((Demand) AND volatility) AND “Software construction”)

35. (((Demand) AND volatility) AND “Software building”)

36. (((Demand) AND change) AND “Software architecture”)

37. (((Demand) AND change) AND “Software design”)

38. (((Demand) AND change) AND “Software structure”)

39. (((Demand) AND change) AND “Software construction”)

40. (((Demand) AND change) AND “Software building”)

41. (((Demand) AND changeability) AND “Software architecture”)

105

42. (((Demand) AND changeability) AND “Software design”)

43. (((Demand) AND changeability) AND “Software structure”)

44. (((Demand) AND changeability) AND “Software construction”)

45. (((Demand) AND changeability) AND “Software building”)

46. (((Demand) AND uncertainty) AND “Software architecture”)

47. (((Demand) AND uncertainty) AND “Software design”)

48. (((Demand) AND uncertainty) AND “Software structure”)

49. (((Demand) AND uncertainty) AND “Software construction”)

50. (((Demand) AND uncertainty) AND “Software building”)

51. (((Demand) AND unstable) AND “Software architecture”)

52. (((Demand) AND unstable) AND “Software design”)

53. (((Demand) AND unstable) AND “Software structure”)

54. (((Demand) AND unstable) AND “Software construction”)

55. (((Demand) AND unstable) AND “Software building”)

56. (((Demand) AND inconsistent) AND “Software architecture”)

57. (((Demand) AND inconsistent) AND “Software design”)

58. (((Demand) AND inconsistent) AND “Software structure”)

59. (((Demand) AND inconsistent) AND “Software construction”)

60. (((Demand) AND inconsistent) AND “Software building”)

61. (((Condition) AND volatility) AND “Software architecture”)

62. (((Condition) AND volatility) AND “Software design”)

63. (((Condition) AND volatility) AND “Software structure”)

64. (((Condition) AND volatility) AND “Software construction”)

65. (((Condition) AND volatility) AND “Software building”)

66. (((Condition) AND change) AND “Software architecture”)

67. (((Condition) AND change) AND “Software design”)

68. (((Condition) AND change) AND “Software structure”)

69. (((Condition) AND change) AND “Software construction”)

70. (((Condition) AND change) AND “Software building”)

71. (((Condition) AND changeability) AND “Software architecture”)

72. (((Condition) AND changeability) AND “Software design”)

73. (((Condition) AND changeability) AND “Software structure”)

74. (((Condition) AND changeability) AND “Software construction”)

75. (((Condition) AND changeability) AND “Software building”)

76. (((Condition) AND uncertainty) AND “Software architecture”)

77. (((Condition) AND uncertainty) AND “Software design”)

78. (((Condition) AND uncertainty) AND “Software structure”)

79. (((Condition) AND uncertainty) AND “Software construction”)

80. (((Condition) AND uncertainty) AND “Software building”)

81. (((Condition) AND unstable) AND “Software architecture”)

82. (((Condition) AND unstable) AND “Software design”)

83. (((Condition) AND unstable) AND “Software structure”)

84. (((Condition) AND unstable) AND “Software construction”)

85. (((Condition) AND unstable) AND “Software building”)

86. (((Condition) AND inconsistent) AND “Software architecture”)

87. (((Condition) AND inconsistent) AND “Software design”)

88. (((Condition) AND inconsistent) AND “Software structure”)

89. (((Condition) AND inconsistent) AND “Software construction”)

106

90. (((Condition) AND inconsistent) AND “Software building”)

91. (((Essential) AND volatility) AND “Software architecture”)

92. (((Essential) AND volatility) AND “Software design”)

93. (((Essential) AND volatility) AND “Software structure”)

94. (((Essential) AND volatility) AND “Software construction”)

95. (((Essential) AND volatility) AND “Software building”)

96. (((Essential) AND change) AND “Software architecture”)

97. (((Essential) AND change) AND “Software design”)

98. (((Essential) AND change) AND “Software structure”)

99. (((Essential) AND change) AND “Software construction”)

100. (((Essential) AND change) AND “Software building”)

101. (((Essential) AND changeability) AND “Software architecture”)

102. (((Essential) AND changeability) AND “Software design”)

103. (((Essential) AND changeability) AND “Software structure”)

104. (((Essential) AND changeability) AND “Software construction”)

105. (((Essential) AND changeability) AND “Software building”)

106. (((Essential) AND uncertainty) AND “Software architecture”)

107. (((Essential) AND uncertainty) AND “Software design”)

108. (((Essential) AND uncertainty) AND “Software structure”)

109. (((Essential) AND uncertainty) AND “Software construction”)

110. (((Essential) AND uncertainty) AND “Software building”)

111. (((Essential) AND unstable) AND “Software architecture”)

112. (((Essential) AND unstable) AND “Software design”)

113. (((Essential) AND unstable) AND “Software structure”)

114. (((Essential) AND unstable) AND “Software construction”)

115. (((Essential) AND unstable) AND “Software building”)

116. (((Essential) AND inconsistent) AND “Software architecture”)

117. (((Essential) AND inconsistent) AND “Software design”)

118. (((Essential) AND inconsistent) AND “Software structure”)

119. (((Essential) AND inconsistent) AND “Software construction”)

120. (((Essential) AND inconsistent) AND “Software building”)

121. (((Need) AND volatility) AND “Software architecture”)

122. (((Need) AND volatility) AND “Software design”)

123. (((Need) AND volatility) AND “Software structure”)

124. (((Need) AND volatility) AND “Software construction”)

125. (((Need) AND volatility) AND “Software building”)

126. (((Need) AND change) AND “Software architecture”)

127. (((Need) AND change) AND “Software design”)

128. (((Need) AND change) AND “Software structure”)

129. (((Need) AND change) AND “Software construction”)

130. (((Need) AND change) AND “Software building”)

131. (((Need) AND changeability) AND “Software architecture”)

132. (((Need) AND changeability) AND “Software design”)

133. (((Need) AND changeability) AND “Software structure”)

134. (((Need) AND changeability) AND “Software construction”)

135. (((Need) AND changeability) AND “Software building”)

136. (((Need) AND uncertainty) AND “Software architecture”)

137. (((Need) AND uncertainty) AND “Software design”)

107

138. (((Need) AND uncertainty) AND “Software structure”)

139. (((Need) AND uncertainty) AND “Software construction”)

140. (((Need) AND uncertainty) AND “Software building”)

141. (((Need) AND unstable) AND “Software architecture”)

142. (((Need) AND unstable) AND “Software design”)

143. (((Need) AND unstable) AND “Software structure”)

144. (((Need) AND unstable) AND “Software construction”)

145. (((Need) AND unstable) AND “Software building”)

146. (((Need) AND inconsistent) AND “Software architecture”)

147. (((Need) AND inconsistent) AND “Software design”)

148. (((Need) AND inconsistent) AND “Software structure”)

149. (((Need) AND inconsistent) AND “Software construction”)

150. (((Need) AND inconsistent) AND “Software building”)

108

APPENDIX-B

Table B: QUALITY ASSESSMENT INCLUDING DISTRIBUTION OF STUDIES

 AND PARTICIPANTS.

Database

&

Participants

Study Name Study Type QA

Score

Status

IEEE & P1 A Prescriptive Approach to Quality-

Focused System Architecture

Research Article

(Journal), 2015

1 Included

Evaluating System Architecture

Quality and Architecting Team

Performance Using Information

Quality Theory

Research Article

(Journal), 2017

0.92 Included

SAM-SoS: A Stochastic Software

Architecture Modeling and

Verification Approach for Complex

System-of-Systems

Research Article

(Journal), 2020

0.92 Included

Automatically Detecting and

Tracking Inconsistencies in

Software Design Models

Research Article

(Journal), 2011

0.71 Included

Decision-Making Assistance in

Engineering Change Management

Process

Research Article

(Journal), 2011

0.57 Included

IEEE & P2 Comparative Analysis of

Requirement Change Management

Challenges Between in-House and

Global Software Development:

Findings of Literature and Industry

Survey

Research Article

(Journal), 2019

0.57 Included

An Industrial Survey of Safety

Evidence Change Impact Analysis

Practice

Research Article

(Journal), 2016

0.92 Included

Structuring Software Requirements

for Architecture Design

Conference Paper

(20
th

 C), 2013

1 Included

Software Architecture Matching by

Meta-model Extension and

Refinement

Conference Paper

(19
th

 C), 2012

1 Included

Product Line Requirements Reuse

Based on Variability Management

Conference Paper

(19
th

 C), 2012

0.65 Included

IEEE & P3 Quality-Driven Self-Adaptation:

Bridging the Gap between

Requirements and Runtime

Architecture by Design Decision

Conference Paper

(36
th

 C), 2012

1 Included

https://ieeexplore.ieee.org/document/7105359/
https://ieeexplore.ieee.org/document/7105359/
https://ieeexplore.ieee.org/document/7837688/
https://ieeexplore.ieee.org/document/7837688/
https://ieeexplore.ieee.org/document/7837688/
https://ieeexplore.ieee.org/document/7837688/
https://ieeexplore.ieee.org/document/5432227/
https://ieeexplore.ieee.org/document/5432227/
https://ieeexplore.ieee.org/document/5432227/
https://ieeexplore.ieee.org/document/5638631/
https://ieeexplore.ieee.org/document/5638631/
https://ieeexplore.ieee.org/document/5638631/
https://ieeexplore.ieee.org/document/8808861/
https://ieeexplore.ieee.org/document/8808861/
https://ieeexplore.ieee.org/document/8808861/
https://ieeexplore.ieee.org/document/8808861/
https://ieeexplore.ieee.org/document/8808861/
https://ieeexplore.ieee.org/document/8808861/
https://ieeexplore.ieee.org/document/7450627/
https://ieeexplore.ieee.org/document/7450627/
https://ieeexplore.ieee.org/document/7450627/

109

IEEE & P3 Priority-Awareness of Non-

Functional Requirements under

Uncertainty

Conference Paper

(28
th

 C), 2020

0.57 Included

An initial evaluation of

requirements dependency types in

change propagation analysis

Conference Paper

(16
th

 C), 2012

0.92 Included

A Method of Specifying and

Classifying Requirements Change

Conference Paper

(22
nd

 C), 2013

0.71 Included

Towards requirements aware

systems: Run-time resolution of

design-time assumptions

Conference Paper

(22
nd

 C), 2011

0.85 Included

RADAR: A Lightweight Tool for

Requirements and Architecture

Decision Analysis

Conference Paper

(39
th

 C), 2017

0.78 Included

Towards search-based modeling and

analysis of requirements and

architecture decisions

Conference Paper

(32
nd

 C), 2017

0.78 Included

Run-time Resolution of Uncertainty Conference Paper

(19
th

 C), 2011

0.92 Included

Assessing Architectural Patterns

Trade-offs using Moment-based

Pattern Taxonomies

Conference Paper

(45
th

 C), 2020

0.57 Included

Improving Software Performance

and Reliability with an Architecture-

Based Self-Adaptive Framework

Conference Paper

(34
th

 C), 2010

0.57 Included

IEEE & P4 Managing Design Time Uncertainty Conference Paper

(20
th

 C), 2017

0.92 Included

Reducing Uncertainty in

Architectural Decisions with AADL

Conference Paper

(44
th

 C), 2011

0.71 Included

Inconsistency Management between

Architectural Decisions and Designs

Using Constraints and Model Fixes

Conference Paper

(23
rd

 C), 2014

0.78 Included

Wiley & P4 Impact of requirements volatility on

software architecture: How do

software teams keep up with ever-

changing requirements?

Research Article

(Special Issue

Paper), 2019

1 Included

Towards evolvable software

architectures based on systems

theoretic stability

Research Article

(Journal), 2011

1 Included

Managing changes in requirements:

an empirical investigation

Research Article

(Journal), 2013

0.85 Included

An optimization-based tool to

support the cost-effective

production of software architecture

documentation

Research Article

(Journal), 2015

0.57 Included

Classification and comparison of

architecture evolution reuse

knowledge—a systematic review

Research Article

(Journal), 2014

0.64 Included

https://ieeexplore.ieee.org/document/7985693/
https://ieeexplore.ieee.org/document/7985693/
https://ieeexplore.ieee.org/document/7985693/
https://ieeexplore.ieee.org/document/8115725/
https://ieeexplore.ieee.org/document/8115725/
https://ieeexplore.ieee.org/document/8115725/
https://ieeexplore.ieee.org/document/5676339/
https://ieeexplore.ieee.org/document/5676339/
https://ieeexplore.ieee.org/document/5676339/
https://ieeexplore.ieee.org/document/5718862/
https://ieeexplore.ieee.org/document/5718862/
https://ieeexplore.ieee.org/document/6824128/
https://ieeexplore.ieee.org/document/6824128/
https://ieeexplore.ieee.org/document/6824128/

110

Wiley & P4 Measuring stability of object-

oriented software architectures

Research Article

(Journal), 2014

0.78 Included

Exploring the missing link: an

empirical study of software fixes

Research Article

(Journal), 2013

0.57 Included

Exploring factors affecting decision

outcome and lead time in large-scale

requirements engineering

Research Article

(Journal), 2015

0.64 Included

Do code data sharing dependencies

support an early prediction of

software's actual change impact set?

Research Article

(Journal), 2018

1 Included

A procedural and flexible approach

for specification, modeling,

definition, and analysis for self-

adaptive systems

Research Article

(Journal), 2020

1 Included

Wiley & P5 Supporting requirements update

during software evolution

Research Article

(Journal), 2015

1 Included

Software smell detection

techniques: A systematic literature

review

Research Article

(Journal), 2020

1 Included

Increasing software development

efficiency and maintainability for

complex industrial systems – A case

study

Research Article

(Journal), 2011

0.57 Included

Continuous software engineering

and its support by usage and

decision knowledge: An interview

study with practitioners

Research Article

(Special Issue

Paper), 2019

0.92 Included

Patterns in System Architecture

Decisions

Research Article

(Journal), 2016

0.92 Included

Analyzing runtime adaptability of

collaboration patterns

Research Article

(Special Issue

Paper), 2014

0.92 Included

Pattern detection and design

rationale traceability: an integrated

approach to software design quality

Research Article

(Journal), 2018

1 Included

An optimization-based tool to

support the cost-effective

production of software architecture

documentation

Research Article

(Journal), 2015

0.85 Included

The impact of traceability on

software maintenance and

evolution: A mapping study

Review Article

(Journal), 2020

0.78 Included

Science

Direct & P6

Software sustainability: Research

and practice from a software

architecture viewpoint

Accepted

Manuscript

(Journal),

2017

1 Included

111

Science

Direct & P6

Stability assessment of aspect-

oriented software architectures: A

quantitative study

Research Article

(Journal), 2010

0.78 Included

10 years of software architecture

knowledge management: Practice

and future

Accepted

Manuscript

(Journal),

2015

1 Included

Generation and validation of traces

between requirements and

architecture based on formal trace

semantics

Research Article

(Journal), 2014

0.78 Included

Early validation of system

requirements and design through

correctness-by-construction

Accepted

Manuscript

(Journal), 2018

1 Included

Optimization of adaptation plans for

a service-oriented architecture with

cost, reliability, availability, and

performance tradeoffs

Research Article

(Journal), 2013

0.92 Included

Empirical research for software

architecture decision making: An

analysis

Accepted

Manuscript

(Journal), 2018

1 Included

Software architecture evolution

through evolvability analysis

Research Article

(Journal), 2012

1 Included

Managing the evolution of software

architecture at minimal cost

underperformance and reliability

constraints

Accepted

Manuscript

(Journal), 2014

0.85 Included

Characterizing software architecture

changes: A systematic review

Research Article

(Journal), 2010

0.92 Included

Science

Direct & P7

An exploratory study of

architectural effects on requirements

decisions

Research Article

(Journal), 2010

1 Included

A documentation framework for

architecture decisions

Research Article

(Journal), 2011

0.92 Included

Accessing decision-making in

software design

Research Article

(Journal), 2010

1 Included

Impact propagation and risk

assessment of requirement changes

for software development projects

based on design structure matrix

Research Article

(Journal), 2011

0.78 Included

A systematic review of software

architecture evolution research

Research Article

(Journal), 2012

1 Included

Advanced quality prediction model

for software architectural

knowledge sharing

Research Article

(Journal), 2011

0.92 Included

Exploiting traceability uncertainty

between software architectural

models and extra-functional results

Research Article

(Journal), 2017

1 Included

https://www.sciencedirect.com/science/article/pii/S0164121210001779
https://www.sciencedirect.com/science/article/pii/S0164121210001779
https://www.sciencedirect.com/science/article/pii/S0164121210001779
https://www.sciencedirect.com/science/article/pii/S0164121211002755
https://www.sciencedirect.com/science/article/pii/S0164121211002755

112

Science

Direct & P7

A survey on software architectural

assumptions

Accepted

Manuscript

(Journal),

2015

0.71 Included

Evaluation of a process for

architectural assumption

management in software

development

Accepted

Manuscript

(Journal),

2018

0.92 Included

Towards supporting the software

architecture life cycle

Research Article

(Journal), 2012

1 Included

Science

Direct & P8

Scaling up software architecture

analysis

Research Article

(Journal), 2012

0.71 Included

Supporting runtime software

architecture: A bidirectional-

transformation-based approach

Research Article

(Journal), 2011

0.5 Included

Controlling software architecture

erosion: A survey

Research Article

(Journal), 2012

1 Included

Requirements traceability

technologies and technology

transfer decision support: A

systematic review

Accepted

Manuscript

(Journal), 2018

2018

1 Included

Performance measurement of

models specified through

component-based software

architectural styles

Research Article

(Journal), 2015

1 Included

Reconciling software architecture

and source code in support of

software evolution

Accepted

Manuscript

(Journal), 2016

0.78 Included

Bridging the gap between software

architecture rationale formalisms

and actual architecture documents:

An ontology-driven approach

Research Article

(Journal), 2012

0.64 Included

The strengths and weaknesses of

software architecture design in the

RUP, MSF, MBASE and RUP-SOA

methodologies: A conceptual review

Accepted

Manuscript

(Journal),

2016

0.71 Included

Automatic enforcement of

constraints in real-time collaborative

architectural decision making

Research Article

(Journal), 2015

1 Included

Towards semi-automated

assignment of software change

requests

Accepted

Manuscript

(Journal),

2016

0.92 Included

Towards a reduction in architectural

knowledge vaporization during agile

global software development

Accepted

Manuscript

(Journal),

2019

1 Included

https://www.sciencedirect.com/science/article/pii/S0164121210003286
https://www.sciencedirect.com/science/article/pii/S0164121210003286
https://www.sciencedirect.com/science/article/pii/S0164121210003286
https://www.sciencedirect.com/science/article/pii/S0164121211002044
https://www.sciencedirect.com/science/article/pii/S0164121211002044
https://www.sciencedirect.com/science/article/pii/S0164121218301754
https://www.sciencedirect.com/science/article/pii/S0164121218301754
https://www.sciencedirect.com/science/article/pii/S0164121218301754
https://www.sciencedirect.com/science/article/pii/S0164121218301754
https://www.sciencedirect.com/science/article/pii/S0263224115003024
https://www.sciencedirect.com/science/article/pii/S0263224115003024
https://www.sciencedirect.com/science/article/pii/S0263224115003024
https://www.sciencedirect.com/science/article/pii/S0263224115003024
https://www.sciencedirect.com/science/article/pii/S0164121216302114
https://www.sciencedirect.com/science/article/pii/S0164121216302114
https://www.sciencedirect.com/science/article/pii/S0164121216302114
https://www.sciencedirect.com/science/article/pii/S0167642310001218
https://www.sciencedirect.com/science/article/pii/S0167642310001218
https://www.sciencedirect.com/science/article/pii/S0167642310001218
https://www.sciencedirect.com/science/article/pii/S0167642310001218
https://www.sciencedirect.com/science/article/pii/S0920548916300058
https://www.sciencedirect.com/science/article/pii/S0920548916300058
https://www.sciencedirect.com/science/article/pii/S0920548916300058
https://www.sciencedirect.com/science/article/pii/S0920548916300058
https://www.sciencedirect.com/science/article/pii/S0164121215000345
https://www.sciencedirect.com/science/article/pii/S0164121215000345
https://www.sciencedirect.com/science/article/pii/S0164121215000345
https://www.sciencedirect.com/science/article/pii/S0164121216000352
https://www.sciencedirect.com/science/article/pii/S0164121216000352
https://www.sciencedirect.com/science/article/pii/S0164121216000352

113

Validating a model-driven software

architecture evaluation and

improvement method: A family of

experiments

Accepted

Manuscript

(Journal),

2014

1 Included

 Software architecture awareness in

long-term software product

evolution

Research Article

(Journal), 2010

1 Included

ACM & P9 Architecture-centric support for

adaptive service collaborations

Research Article

(Journal), 2014

1 Included

Decision-making techniques for

software architecture design: A

comparative survey

Research Article

(Journal), 2011

0.71 Included

Maintaining Architecture-

Implementation Conformance to

Support Architecture Centrality:

From Single System to Product Line

Development

Research Article

(Journal), 2018

0.85 Included

Traceability and SysML design

slices to support safety inspections:

A controlled experiment

Research Article

(Journal), 2014

0.92 Included

The value of design rationale

information

Research Article

(Journal), 2013

0.64 Included

Ensuring the Consistency between

User Requirements and Task

Models: A Behavior-Based

Automated Approach

Research Article

(Journal), 2020

0.57 Included

Improving Scalability and Reward

of Utility-Driven Self-Healing for

Large Dynamic Architectures

Research Article

(Journal), 2020

1 Included

Requirements reflection:

requirements as runtime entities

Conference Paper

(32
nd

 C), 2010

1 Included

https://www.sciencedirect.com/science/article/pii/S0950584914001359
https://www.sciencedirect.com/science/article/pii/S0950584914001359
https://www.sciencedirect.com/science/article/pii/S0950584914001359
https://www.sciencedirect.com/science/article/pii/S0950584914001359
https://www.sciencedirect.com/science/article/pii/S0164121210001743
https://www.sciencedirect.com/science/article/pii/S0164121210001743
https://www.sciencedirect.com/science/article/pii/S0164121210001743

114

APPENDIX-C

Table C: THE DATA EXTRACTIONS FORMS OF THE CONDUCTED SLR.

Entities Respective Data

Title A Prescriptive Approach to Quality-Focused System Architecture

Paper ID I-1

Type Journal Article

Publisher IEEE Journal of Systems

QA Score 1

Answer to RQ1 SW Design, Architecture, and SQW Maintenance

Status Yes

Entities Respective Data

Title Evaluating System Architecture Quality and Architecting Team

Performance Using Information Quality Theory

Paper ID I-2

Type Journal Article

Publisher IEEE Journal of Systems

QA Score 0.92

Answer to RQ1 Team and Architecture

Status Yes

Entities Respective Data

Title SAM-SoS: A Stochastic Software Architecture Modeling and

Verification Approach for Complex System-of-Systems

Paper ID I-3

Type Journal Article

Publisher IEEE Journal of Access

QA Score 0.92

Answer to RQ1 Requirement Volatility, SW Design, Quality Assurance, and

Architecture.

Status Yes

Entities Respective Data

Title Automatically Detecting and Tracking Inconsistencies in Software

Design Models

Paper ID I-4

Type Journal Article

Publisher IEEE Journal of Transactions on Software Engineering

QA Score 0.71

Answer to RQ1 SW Design

Status Yes

https://ieeexplore.ieee.org/document/7105359/
https://ieeexplore.ieee.org/document/7837688/
https://ieeexplore.ieee.org/document/7837688/
https://ieeexplore.ieee.org/document/5432227/
https://ieeexplore.ieee.org/document/5432227/

115

Entities Respective Data

Title Decision-Making Assistance in Engineering Change Management

Process

Paper ID I-5

Type Journal Article

Publisher IEEE Journal of Transactions on Systems, Man and Cybernetics.

QA Score 0.57

Answer to RQ1 Team, Communication issues, and SW Design

Status Yes

Entities Respective Data

Title Comparative Analysis of Requirement Change Management

Challenges Between in-House and Global Software Development:

Findings of Literature and Industry Survey

Paper ID I-6

Type Journal Article

Publisher IEEE Journal of Access

QA Score 0.57

Answer to RQ1 Resource Management, Dependency, Traceability, and

Documentation.

Status Yes

Entities Respective Data

Title An Industrial Survey of Safety Evidence Change Impact Analysis

Practice

Paper ID I-7

Type Journal Article

Publisher IEEE Journal of Transactions on Software Engineering

QA Score 0.92

Answer to RQ1 SW Artefacts

Status Yes

Entities Respective Data

Title Structuring Software Requirements for Architecture Design

(20
th

 C)

Paper ID I-8

Type Conference paper

Publisher The International Conference and Workshop on Engineering of

Computer-Based Systems

QA Score 1

Answer to RQ1 Requirement Volatility, SW Design, and Architecture.

Status Yes

https://ieeexplore.ieee.org/document/5638631/
https://ieeexplore.ieee.org/document/5638631/
https://ieeexplore.ieee.org/document/8808861/
https://ieeexplore.ieee.org/document/8808861/
https://ieeexplore.ieee.org/document/8808861/
https://ieeexplore.ieee.org/document/7450627/
https://ieeexplore.ieee.org/document/7450627/

116

Entities Respective Data

Title Software Architecture Matching by Meta-model Extension and

Refinement (19
th

 C)

Paper ID I-9

Type Conference paper

Publisher The Asia-Pacific Conference on Software Engineering

QA Score 1

Answer to RQ1 Architecture and Requirement Volatility

Status Yes

Entities Respective Data

Title Product Line Requirements Reuse Based on Variability Management

(19
th

 C)

Paper ID I-10

Type Conference paper

Publisher The Asia-Pacific Conference on Software Engineering

QA Score 0.65

Answer to RQ1 Organizational leadership and dependencies

Status Yes

Entities Respective Data

Title Quality-Driven Self-Adaptation: Bridging the Gap between

Requirements and Runtime Architecture by Design Decision (36
th

 C)

Paper ID I-11

Type Conference paper

Publisher The International Conference on Computer Software and Applications.

QA Score 1

Answer to RQ1 Adaption to change, Quality Assurance, SW Design, and Architecture.

Status Yes

Entities Respective Data

Title Priority-Awareness of Non-Functional Requirements under

Uncertainty (28
th

 C)

Paper ID I-12

Type Conference paper

Publisher The International Conference on Requirements Engineering

QA Score 0.57

Answer to RQ1 Communication issues, Trade-offs, and Integration of Linkage

Status Yes

117

Entities Respective Data

Title An initial evaluation of requirements dependency types in change

propagation analysis (16
th

 C)

Paper ID I-13

Type Conference paper

Publisher The International Conference on Evaluation & Assessment in Software

Engineering

QA Score 0.92

Answer to RQ1 Requirement Volatility, SW Design, Code, Stakeholder, and

Dependencies

Status Yes

Entities Respective Data

Title A Method of Specifying and Classifying Requirements Change (22
nd

C)

Paper ID I-14

Type Conference paper

Publisher The Australian Conference on Software Engineering

QA Score 0.71

Answer to RQ1 Dynamic Business Environment and Communication issue

Status Yes

Entities Respective Data

Title Towards requirements aware systems: Run-time resolution of design-

time assumptions (26
th

 C)

Paper ID I-15

Type Conference paper

Publisher The International Conference on Automated Software Engineering

(ASE)

QA Score 0.85

Answer to RQ1 Stakeholder and SW Design

Status Yes

Entities Respective Data

Title RADAR: A Lightweight Tool for Requirements and Architecture

Decision Analysis (39
th

 C)

Paper ID I-16

Type Conference paper

Publisher The International Conference on Software Engineering (ICSE)

QA Score 0.78

Answer to RQ1 Requirement Volatility, Stakeholder, and Architecture.

Status Yes

https://ieeexplore.ieee.org/document/7985693/
https://ieeexplore.ieee.org/document/7985693/

118

Entities Respective Data

Title Towards search-based modeling and analysis of requirements and

architecture decisions (32th C)

Paper ID I-17

Type Conference paper

Publisher The International Conference on Automated Software Engineering

(ASE)

QA Score 0.78

Answer to RQ1 Requirement Volatility and Stakeholder.

Status Yes

Entities Respective Data

Title Run-time Resolution of Uncertainty (19
th

 C)

Paper ID I-18

Type Conference paper

Publisher The International Conference on Requirements Engineering

QA Score 0.92

Answer to RQ1 Requirement Volatility and SW Design

Status Yes

Entities Respective Data

Title Assessing Architectural Patterns Trade-offs using Moment-based

Pattern Taxonomies (45
th

 C)

Paper ID I-19

Type Conference paper

Publisher The Latin American Computing Conference (CLEI)

QA Score 0.57

Answer to RQ1 Knowledge, Traceability, and Trade-off.

Status Yes

Entities Respective Data

Title Improving Software Performance and Reliability with an Architecture-

Based Self-Adaptive Framework (34
th

 C)

Paper ID I-20

Type Conference paper

Publisher The Annual International Computer Software and Applications

Conference (COMPSAC)

QA Score 0.57

Answer to RQ1 Architecture

Status Yes

https://ieeexplore.ieee.org/document/8115725/
https://ieeexplore.ieee.org/document/8115725/
https://ieeexplore.ieee.org/document/5676339/
https://ieeexplore.ieee.org/document/5676339/

119

Entities Respective Data

Title Managing Design Time Uncertainty (20
th

C)

Paper ID I-21

Type Conference paper

Publisher IEEE International Conference on Model-Driven Engineering

Languages and Systems (MODELS)

QA Score 0.92

Answer to RQ1 Knowledge and SW Design

Status Yes

Entities Respective Data

Title Reducing Uncertainty in Architectural Decisions with AADL

(44
th

 C)

Paper ID I-22

Type Conference paper

Publisher Annual Hawaii International Conference on System Sciences (HICSS)

QA Score 0.71

Answer to RQ1 Architectural Complexity

Status Yes

Entities Respective Data

Title Inconsistency Management between Architectural Decisions and

Designs Using Constraints and Model Fixes (23
rd

 C)

Paper ID I-23

Type Conference paper

Publisher The Australian Conference on Software Engineering

QA Score 0.78

Answer to RQ1 SW Design

Status Yes

Entities Respective Data

Title Impact of requirements volatility on software architecture: How do

software teams keep up with ever-changing requirements?

Paper ID W-1

Type Special Issue Paper

Publisher Journal of Software: Practice & Experience

QA Score 1

Answer to RQ1 Requirement Volatility, SW Defects, Resource Management,

Communication Issues, Documentation, Dependencies, and SW

Architecture

Status Yes

https://ieeexplore.ieee.org/document/5718862/
https://ieeexplore.ieee.org/document/6824128/
https://ieeexplore.ieee.org/document/6824128/

120

Entities Respective Data

Title Towards evolvable software architectures based on systems theoretic

stability

Paper ID W-2

Type Research Article

Publisher Journal of Software: Practice & Experience

QA Score 1

Answer to RQ1 Requirement Volatility and Architecture

Status Yes

Entities Respective Data

Title Managing changes in requirements: an empirical investigation

Paper ID W-3

Type Journal: Research Article

Publisher Journal of Software: Evolution & Process

QA Score 0.85

Answer to RQ1 Requirement Volatility

Status Yes

Entities Respective Data

Title An optimization-based tool to support the cost-effective production of

software architecture documentation

Paper ID W-4

Type Journal: Research Article

Publisher Journal of Software: Evolution & Process

QA Score 0.57

Answer to RQ1 Resource Management, Documentation, Stakeholder, and

Architectural Complexity.

Status Yes

Entities Respective Data

Title Classification and comparison of architecture evolution reuse

knowledge—a systematic review

Paper ID W-5

Type Journal: Research Article

Publisher Journal of Software: Evolution & Process

QA Score 0.64

Answer to RQ1 Architecture

Status Yes

121

Entities Respective Data

Title Measuring stability of object-oriented software architectures

Paper ID W-6

Type Journal: Research Article

Publisher IET Software

QA Score 0.78

Answer to RQ1 Architecture

Status Yes

Entities Respective Data

Title Exploring the missing link: an empirical study of software fixes

Paper ID W-7

Type Journal: Research Article

Publisher Journal of Software: Software Testing, Verification & Reliability

QA Score 0.57

Answer to RQ1 SW Defects

Status Yes

Entities Respective Data

Title Exploring factors affecting decision outcome and lead time in large-

scale requirements engineering

Paper ID W-8

Type Journal: Research Article

Publisher Journal of Software: Evolution & Process

QA Score 0.64

Answer to RQ1 Resource Management and Knowledge

Status Yes

Entities Respective Data

Title Do code data sharing dependencies support an early prediction of

software's actual change impact set?

Paper ID W-9

Type Research Article

Publisher Journal of Software: Evolution & Process

QA Score 1

Answer to RQ1 Dependency, Requirement Volatility, and Code

Status Yes

122

Entities Respective Data

Title A procedural and flexible approach for specification, modeling,

definition, and analysis for self-adaptive systems

Paper ID W-10

Type Journal: Research Article

Publisher Software: Practice & Experience

QA Score 1

Answer to RQ1 Adaption to Change and SW Design

Status Yes

Entities Respective Data

Title Supporting requirements update during software evolution

Paper ID W-11

Type Journal: Research Article

Publisher Journal of Software: Evolution & Process

QA Score 1

Answer to RQ1 Requirement Volatility and Code.

Status Yes

Entities Respective Data

Title Software smell detection techniques: A systematic literature review

Paper ID W-12

Type Journal: Review Article

Publisher Journal of Software: Evolution & Process

QA Score 1

Answer to RQ1 Code and SW Design

Status Yes

Entities Respective Data

Title Increasing software development efficiency and maintainability for

complex industrial systems – A case study

Paper ID W-13

Type Journal: Research Article

Publisher Journal of Software: Process & Evolution

QA Score 0.57

Answer to RQ1 Architectural Complexity and SQW Maintenance.

Status Yes

Entities Respective Data

Title Continuous software engineering and its support by usage and decision

knowledge: An interview study with practitioners

Paper ID W-14

Type Journal: Special Issue Paper

Publisher Journal of Software: Evolution & Process

QA Score 0.92

Answer to RQ1 Integration of Usage, Knowledge, and Traceability

Status Yes

123

Entities Respective Data

Title Patterns in System Architecture Decisions

Paper ID W-15

Type Journal: Research Article

Publisher The Journal of the International Council on System & Engineering

QA Score 0.92

Answer to RQ1 Knowledge and Architecture

Status Yes

Entities Respective Data

Title Analyzing runtime adaptability of collaboration patterns

Paper ID W-16

Type Journal: Special Issue Paper

Publisher Concurrency & Computation: Practice & Experience

QA Score 0.92

Answer to RQ1 Adaption to change and Communication Issues

Status Yes

Entities Respective Data

Title Pattern detection and design rationale traceability: an integrated

approach to software design quality

Paper ID W-17

Type Journal: Research Article

Publisher IET Software

QA Score 1

Answer to RQ1 SW Design and Traceability

Status Yes

Entities Respective Data

Title An optimization-based tool to support the cost-effective production of

software architecture documentation

Paper ID W-18

Type Journal: Research Article

Publisher Journal of Software: Evolution & Process

QA Score 1

Answer to RQ1 Resource Management, Stakeholder, Documentation, and SW

Architecture.

Status Yes

124

Entities Respective Data

Title The impact of traceability on software maintenance and evolution: A

mapping study

Paper ID W-19

Type Journal: Review Article

Publisher Journal of Software: Evolution & Process

QA Score 0.78

Answer to RQ1 Traceability and SQW Maintenance.

Status Yes

Entities Respective Data

Title Software sustainability: Research and practice from a software

architecture viewpoint

Paper ID SD-1

Type Journal: Accepted Manuscript

Publisher Elsevier: The Journal of System & Software

QA Score 1

Answer to RQ1 Technical Debt, Code, and Architecture

Status Yes

Entities Respective Data

Title Stability assessment of aspect-oriented software architectures: A

quantitative study

Paper ID SD-2

Type Journal: Research Article

Publisher Elsevier: The Journal of System & Software

QA Score 0.78

Answer to RQ1 Architectural Complexity

Status Yes

Entities Respective Data

Title 10 years of software architecture knowledge management: Practice and

future

Paper ID SD-3

Type Journal: Accepted Manuscript

Publisher Elsevier: The Journal of System & Software

QA Score 1

Answer to RQ1 Knowledge

Status Yes

125

Entities Respective Data

Title Generation and validation of traces between requirements and

architecture based on formal trace semantics

Paper ID SD-4

Type Journal: Research Article

Publisher Elsevier: The Journal of System & Software

QA Score 0.78

Answer to RQ1 Tractability and Architecture

Status Yes

Entities Respective Data

Title Early validation of system requirements and design through

correctness-by-construction

Paper ID SD-5

Type Journal: Accepted Manuscript

Publisher Elsevier: The Journal of System & Software

QA Score 1

Answer to RQ1 SW Design

Status Yes

Entities Respective Data

Title Optimization of adaptation plans for a service-oriented architecture

with cost, reliability, availability, and performance tradeoff

Paper ID SD-6

Type Journal: Research Article

Publisher Elsevier: The Journal of System & Software

QA Score 0.92

Answer to RQ1 Adaption to Change and Architecture

Status Yes

Entities Respective Data

Title Empirical research for software architecture decision making: An

analysis

Paper ID SD-7

Type Journal: Accepted Manuscript

Publisher Elsevier: The Journal of System & Software

QA Score 1

Answer to RQ1 Human Behavior and Architecture

Status Yes

126

Entities Respective Data

Title Software architecture evolution through evolvability analysis

Paper ID SD-8

Type Journal: Research Article

Publisher Elsevier: The Journal of System & Software

QA Score 1

Answer to RQ1 Architecture

Status Yes

Entities Respective Data

Title Managing the evolution of software architecture at minimal cost

underperformance and reliability constraints

Paper ID SD-9

Type Journal: Accepted Manuscript

Publisher Elsevier: Science of Computer Programming

QA Score 0.85

Answer to RQ1 Architecture and Human Behavior

Status Yes

Entities Respective Data

Title Characterizing software architecture changes: A systematic review

Paper ID SD-10

Type Journal: Research Article

Publisher Elsevier: Information & Software Technology

QA Score 0.92

Answer to RQ1 Requirement Volatility and Architecture

Status Yes

Entities Respective Data

Title An exploratory study of architectural effects on requirements decisions

Paper ID SD-11

Type Journal: Research Article

Publisher Elsevier: The Journal of System & Software

QA Score 1

Answer to RQ1 Requirement Volatility, Knowledge, and Architecture.

Status Yes

https://www.sciencedirect.com/science/article/pii/S0164121210001779

127

Entities Respective Data

Title A documentation framework for architecture decisions

Paper ID SD-12

Type Journal: Research Article

Publisher Elsevier: The Journal of System & Software

QA Score 0.92

Answer to RQ1 Stakeholder and Architecture

Status Yes

Entities Respective Data

Title Accessing decision-making in software design

Paper ID SD-13

Type Journal: Research Article

Publisher Elsevier: Design Studies

QA Score 1

Answer to RQ1 SW Design and Team

Status Yes

Entities Respective Data

Title Impact propagation and risk assessment of requirement changes for

software development projects based on design structure matrix

Paper ID SD-14

Type Journal: Research Article

Publisher Elsevier: International Journal of Project Management

QA Score 0.78

Answer to RQ1 Requirement Volatility and Architecture

Status Yes

Entities Respective Data

Title A systematic review of software architecture evolution research

Paper ID SD-15

Type Journal: Research Article

Publisher Elsevier: Information & Software Technology

QA Score 1

Answer to RQ1 Architecture

Status Yes

Entities Respective Data

Title Advanced quality prediction model for software architectural

knowledge sharing

Paper ID SD-16

Type Journal: Research Article

Publisher Elsevier: The Journal of Systems & Software

QA Score 0.92

Answer to RQ1 Knowledge and Architecture

Status Yes

https://www.sciencedirect.com/science/article/pii/S0164121211002755

128

Entities Respective Data

Title Exploiting traceability uncertainty between software architectural

models and extra-functional results

Paper ID SD-17

Type Journal: Research Article

Publisher Elsevier: The Journal of System & Software

QA Score 1

Answer to RQ1 Traceability and Security

Status Yes

Entities Respective Data

Title A survey on software architectural assumptions

Paper ID SD-18

Type Journal: Accepted Manuscript

Publisher Elsevier: The Journal of System & Software

QA Score 1

Answer to RQ1 Architecture

Status Yes

Entities Respective Data

Title Evaluation of a process for architectural assumption management in

software development

Paper ID SD-19

Type Journal: Accepted Manuscript

Publisher Elsevier: Science of Computer Programmer

QA Score 0.92

Answer to RQ1 Architecture

Status Yes

Entities Respective Data

Title Towards supporting the software architecture life cycle

Paper ID SD-20

Type Journal: Research Article

Publisher Elsevier: The Journal of System & Software

QA Score 1

Answer to RQ1 Architecture and SW Design

Status Yes

129

Entities Respective Data

Title Scaling up software architecture analysis

Paper ID SD-21

Type Journal: Research Article

Publisher Elsevier: The Journal of System & Software

QA Score 0.71

Answer to RQ1 Architectural Complexity

Status Yes

Entities Respective Data

Title Supporting runtime software architecture: A bidirectional-

transformation-based approach

Paper ID SD-22

Type Journal: Research Article

Publisher Elsevier: The Journal of Systems & Software

QA Score 0.5

Answer to RQ1 Requirement Volatility and Architecture

Status Yes

Entities Respective Data

Title Controlling software architecture erosion: A survey

Paper ID SD-23

Type Journal: Research Article

Publisher Elsevier: The Journal of Systems & Software

QA Score 1

Answer to RQ1 Adaption to Change and Architecture

Status Yes

Entities Respective Data

Title Requirements traceability technologies and technology transfer

decision support: A systematic review

Paper ID SD-24

Type Journal: Accepted Manuscript

Publisher Elsevier: the Journal of System & Software

QA Score 1

Answer to RQ1 Traceability

Status Yes

Entities Respective Data

Title Performance measurement of models specified through component-

based software architectural styles

Paper ID SD-25

Type Journal: Research Articles

Publisher Elsevier: Measurement

QA Score 1

Answer to RQ1 Architectural Complexity

Status Yes

https://www.sciencedirect.com/science/article/pii/S0164121210003286
https://www.sciencedirect.com/science/article/pii/S0164121210003286
https://www.sciencedirect.com/science/article/pii/S0164121211002044
https://www.sciencedirect.com/science/article/pii/S0164121218301754
https://www.sciencedirect.com/science/article/pii/S0164121218301754
https://www.sciencedirect.com/science/article/pii/S0263224115003024
https://www.sciencedirect.com/science/article/pii/S0263224115003024

130

Entities Respective Data

Title Reconciling software architecture and source code in support of

software evolution

Paper ID SD-26

Type Journal: Accepted Manuscript

Publisher Elsevier: The Journal of System & Software

QA Score 0.78

Answer to RQ1 Architecture and Code

Status Yes

Entities Respective Data

Title Bridging the gap between software architecture rationale formalisms

and actual architecture documents: An ontology-driven approach

Paper ID SD-27

Type Journal: Research Article

Publisher Elsevier: Science of Computer Programming

QA Score 0.64

Answer to RQ1 Architecture and Documentation

Status Yes

Entities Respective Data

Title The strengths and weaknesses of software architecture design in the

RUP, MSF, MBASE, and RUP-SOA methodologies: A conceptual

review

Paper ID SD-28

Type Journal: Accepted Manuscript

Publisher Elsevier: Computer Standards & Interfaces

QA Score 0.71

Answer to RQ1 SW Design and Architecture

Status Yes

Entities Respective Data

Title Automatic enforcement of constraints in real-time collaborative

architectural decision making

Paper ID SD-29

Type Journal: Research Article

Publisher Elsevier: The Journal of Systems & Software

QA Score 1

Answer to RQ1 Knowledge, Trade-off, Stakeholder, and Architectural complexity

Status Yes

https://www.sciencedirect.com/science/article/pii/S0164121216302114
https://www.sciencedirect.com/science/article/pii/S0164121216302114
https://www.sciencedirect.com/science/article/pii/S0167642310001218
https://www.sciencedirect.com/science/article/pii/S0167642310001218
https://www.sciencedirect.com/science/article/pii/S0920548916300058
https://www.sciencedirect.com/science/article/pii/S0920548916300058
https://www.sciencedirect.com/science/article/pii/S0920548916300058

131

Entities Respective Data

Title Towards semi-automated assignment of software change requests

Paper ID SD-30

Type Journal: Accepted Manuscript

Publisher Elsevier: The Journal of Systems & Software

QA Score 0.92

Answer to RQ1 Requirement Volatility

Status Yes

Entities Respective Data

Title Towards a reduction in architectural knowledge vaporization during

agile global software development

Paper ID SD-31

Type Journal: Accepted Manuscript

Publisher Elsevier: Information & Software Technology

QA Score 1

Answer to RQ1 Knowledge and architecture

Status Yes

Entities Respective Data

Title Validating a model-driven software architecture evaluation and

improvement method: A family of experiments

Paper ID SD-32

Type Journal: Accepted Manuscript

Publisher Elsevier: Information & Software Technology

QA Score 1

Answer to RQ1 Architecture

Status Yes

Entities Respective Data

Title Software architecture awareness in long-term software product

evolution

Paper ID SD-33

Type Journal: Research Article

Publisher Elsevier: The Journal of Systems & Software

QA Score 1

Answer to RQ1 Architecture, Communication, and Knowledge

Status Yes

https://www.sciencedirect.com/science/article/pii/S0164121216000352
https://www.sciencedirect.com/science/article/pii/S0950584919300898
https://www.sciencedirect.com/science/article/pii/S0950584919300898
https://www.sciencedirect.com/science/article/pii/S0950584914001359
https://www.sciencedirect.com/science/article/pii/S0950584914001359
https://www.sciencedirect.com/science/article/pii/S0164121210001743
https://www.sciencedirect.com/science/article/pii/S0164121210001743

132

Entities Respective Data

Title Architecture-centric support for adaptive service collaborations

Paper ID A-1

Type Journal: Research Article

Publisher ACM Transactions on Software Engineering and Methodology

QA Score 1

Answer to RQ1 Dynamic Business Environment, Communication issues, SW Design,

Architectural Complexity, dependencies, and SW defects.

Status Yes

Entities Respective Data

Title Decision-making techniques for software architecture design: A

comparative survey

Paper ID A-2

Type Journal: Research Article

Publisher ACM Computing Surveys

QA Score 0.71

Answer to RQ1 Architecture, SW Design, and Trade-off.

Status Yes

Entities Respective Data

Title Maintaining Architecture-Implementation Conformance to Support

Architecture Centrality: From Single System to Product Line

Development

Paper ID A-3

Type Journal: Research Article

Publisher ACM Transactions on Software Engineering and Methodology

(TOSEM)

QA Score 0.85

Answer to RQ1 Architectural Complexity, Code, and SQW Maintenance.

Status Yes

Entities Respective Data

Title Traceability and SysML design slices to support safety inspections: A

controlled experiment

Paper ID A-4

Type Journal: Research Article

Publisher ACM Transactions on Software Engineering and Methodology

(TOSEM)

QA Score 0.92

Answer to RQ1 SW Design, Traceability, SW Defects

Status Yes

https://dl.acm.org/toc/tosem/2014/23/1
https://dl.acm.org/toc/csur/2011/43/4
https://dl.acm.org/toc/tosem/2018/27/2
https://dl.acm.org/toc/tosem/2018/27/2
https://dl.acm.org/toc/tosem/2014/23/1
https://dl.acm.org/toc/tosem/2014/23/1

133

Entities Respective Data

Title The value of design rationale information

Paper ID A-5

Type Journal: Research Article

Publisher ACM Transactions on Software Engineering and Methodology

(TOSEM)

QA Score 0.64

Answer to RQ1 SW Design or Design Implementation, Documentation

Status Yes

Entities Respective Data

Title Ensuring the Consistency between User Requirements and Task

Models: A Behavior-Based Automated Approach

Paper ID A-6

Type Journal: Research Article

Publisher Proceedings of the ACM on Human-Computer Interaction

(PACMHCI)

QA Score 0.57

Answer to RQ1 Stakeholder, Human Behavior, SW Design, and SW Artefacts.

Status Yes

Entities Respective Data

Title Improving Scalability and Reward of Utility-Driven Self-Healing for

Large Dynamic Architectures

Paper ID A-7

Type Journal: Research Article

Publisher ACM Transactions on Autonomous and Adaptive Systems

QA Score 1

Answer to RQ1 Self-Healing Mechanism

Status Yes

Entities Respective Data

Title Requirements reflection: requirements as runtime entities (32th C)

Paper ID A-8

Type Conference paper

Publisher ACM 32nd International Conference on Software Engineering

QA Score 1

Answer to RQ1 Software Architecture, SW Artefacts, and Requirement Volatility.

Status Yes

https://dl.acm.org/toc/tosem/2014/23/1
https://dl.acm.org/toc/tosem/2014/23/1
https://dl.acm.org/toc/pacmhci/2020/4/EICS
https://dl.acm.org/toc/pacmhci/2020/4/EICS
https://dl.acm.org/toc/taas/2019/14/3

134

APPENDIX-D

Table D: EXECUTION OF DATA ENCODING TECHNIQUE

Paper

ID

Paper Statement Respective

Code

Data Encoding

I1 “The most critical requirements for the

lifetime value of a system are its

nonfunctional requirements (NFRs) such as

reliability, security, maintainability,

changeability, etc. These are collectively

known as the "ilities," and they are

typically not addressed in system design

until the functional architecture has been

completed.”

I1L4,

I1L8,

I1L7

Maintenance

AND

Architecture

AND

SW Design

I2 “As engineering projects grow in

complexity, estimating the required

engineering effort during the development

phase of a project has become more art than

science. Predictions of required engineering

effort are based on empirical models fitted

to historical data with additional subjective

factors, such as “team cohesion,” applied

based on the judgment of the user of the

mode.”

I2L9&10 Team Cohesion

I3 “Dynamic system who’s Constituent

Systems (CSs) is not known precisely at

design time, and the environment in which

they operate is uncertain. Moreover,

unknown conditions and volatility have

significant effects on crucial Quality

Attributes (QAs) such as performance,

reliability and security.”

I3L3,

I3L5,

I3L6

SW Design

AND

Volatility

AND

Quality Assurance

I4 “Software models typically contain many

inconsistencies and consistency checkers

help engineers find them. Even if engineers

are willing to tolerate inconsistencies, they

are better off knowing about their existence

to avoid follow-on errors and unnecessary

rework. “

I4L1 SW

Implementation

OR

Design

I5 “Both the integration of the various tools

intervening in the life cycle of a product

and the management of the communication

between the various multidisciplinary

teams working on a product are difficult

tasks. “

I5L1,

I5L4,

I5L5

Design Implementation

AND

Communication Issues

AND

Team

I6 “The survey result indicates that there are

four out of nine challenges, namely impact

analysis, requirement traceability,

I6L3,

I6L4,

I6L7,

Traceability

AND

Dependency

135

requirement dependency, and system

instability having the same impact in both

in-house and GSD approaches. On the

other hand, cost/time estimation, artifacts

documents management, user involvement,

requirement consistency, and requirement

prioritization need more attention while

implemented in GSD paradigm.“

I6L8 AND

Cost Estimation

AND

Documentation

I7 “In many application domains, critical

systems must comply with safety standards.

This involves gathering safety evidence in

the form of artefacts such as safety

analyses, system specifications, and testing

results.”

I7L4 SW Artefacts

I8 “Characteristics of individual requirements

(e.g. the complexity or volatility of

requirement) also impact the design of

architectures. Consequently, systematically

handling the impact of individual

requirements on the architecture can

facilitate the design of architectures.”

I8L2

AND

I8L7

Requirement Volatility

AND

Design Implementation

AND

Architecture

I9 “Nowadays, software runs in an open,

dynamic and changeable environment,

which requires the SA should be dynamic

and able to adapt to changes. The

inconsistency of the software architecture

caused by adapting to changes may lead to

architecture mismatching, which becomes a

new challenge for the software

development. “

I9L4,

I9L7

Requirement Changes

OR

Requirement Volatility

AND

Architecture

I10 “As organizations respond to changing

environments new software products

emerge as a compromise between customer

requirements, extensions of existing

products and commercial needs. “

I10L1,

I10L3

Organizational

Leadership

AND

Customer Needs

I11 “Running with static requirements and

design decisions, a software system cannot

always perform optimally in a highly

uncertain and rapidly changing

environment. Quality-driven self-

adaptation, which enables Software system

to continually adapt its structure and

behavior to improve the overall quality

satisfaction, thus becomes a promising

capability of software systems. “

I11L7,

I11L8,

I11L10

Adaption to Change

AND

Quality Assurance

SW Design

OR

Architecture

I12 “As the run-time context changes, the

system may need to re-configure itself, and

since resources are finite this may require

trade-offs between the SAS’s non-

functional requirements (NFRs). A number

I12L4,

I12L9

Trade-Off

AND

Lack of Explicit Linkage

AD

Requirements

136

of runtime modelling techniques have been

developed for resolution of uncertainty in

SASs. However, current techniques lack

the explicit runtime representation of NFR

priorities, leading to the risk that

adaptations may fail to respect the NFRs’

priorities. “

I13 “Change propagation analysis helps predict

the parts of the software that may be

affected if a change is made. Existing

research on change propagation focuses on

design and code level changes. However, as

software evolves, the requirements that

drive these changes also have intricate

dependencies.”

I13L3,

I13L5,

I13L8

Requirement change

AND

SW Design

AND

Code

AND

Dependencies

I14 “Change is one aspect of business that is

inevitable. The volatile nature of business

requirements is considered one of the main

contributors to information technology

project failure. One of the key reasons for

difficulty in managing change is the lack of

adequate methods to communicate change

from business to the IT department.“

I14l2&3,

I14L7

Dynamic Business

Environment

AND

Communication Issues

I15 “In earlier work we proposed the idea of

Requirements-aware systems that could

introspect about the extent to which their

goals were being satisfied at runtime.”

I15L4 Stakeholder Goals

I16 “Uncertainty and conflicting stakeholders’

objectives make many requirements and

architecture decisions particularly hard.

Quantitative probabilistic models allow

software architects to analyze such

decisions using stochastic simulation and

multi- objective optimization, but the

difficulty of elaborating the models is an

obstacle to the wider adoption of such

techniques.”

I16L1

AND

I16L3

Stakeholders Objectives

AND

Architecture

I17 “Many requirements engineering and

software architecture decisions are

complicated by uncertainty and multiple

conflicting stakeholders objectives. Using

quantitative decision models helps clarify

these decisions and allows the use of multi-

objective simulation optimization

techniques in analyzing the impact of

decisions on objectives. “

I17L2,

I17L4

Decision Knowledge

AND

Stakeholder Objectives

I18 “Requirements awareness should help

optimize requirements satisfaction when

factors that were uncertain at design time

are resolved at runtime.”

I18L Requirement Volatility

AND

SW Design

137

I19 “Large software systems are designed to

satisfy or accommodate many

requirements; architectural patterns are a

well-known technique to reuse design

knowledge. Thus, a key concern of systems

architects is understanding trade-offs

among alternative solutions; e.g., a pattern

may favor performance at the expense of

scalability or security, another may

privilege scalability, and yet another may

push security.”

I19L5,

I19L3,

I19L6

Knowledge

AND

Traceability

AND

Trade-off

I20 “A self- adaptive approach that integrates

monitoring, analyzing, and actuation

functionalities has the potential to

accommodate to a dynamically changing

environment. The main objective of this

paper is to develop an architecture-based

self-adaptive framework to improve

performance and resource efficiency of a

server while maintaining reliable services.”

I12L6 Architecture

I21 “Any software system is the accumulated

result of many design decisions taken by its

developers. During the course of

development, however, developers are

often uncertain about how to make these

decisions. This uncertainty reflects lack of

knowledge about the design of the system,

rather than about the environment in which

the system is intended to operate. It is

therefore called design-time uncertainty,

and is different from environmental

uncertainty.”

I21L2

I21L7,

I21L10

Decision Knowledge

AND

SW Design

OR

Design Implementations

I22 “A model-driven approach to real-time

software systems development enables the

conceptualization of software, fostering a

more thorough understanding of its often

complex architecture and behavior and

promoting the documentation and analysis

of concerns common to real-time

embedded systems such as scheduling,

resource allocation, and performance. “

I22L5,

I22L6,

I22L9

Architecture Complexity

AND

Documentation

And

Resource management

I23 “The software architecture community has

proposed to document the design rationale

of software architectures by means of

architectural design decisions.”

I23L SW Design

OR

Design Implementations

W1 “Requirements volatility is a major issue in

software development, causing problems

such as higher defect density, project

delays, and cost overruns. Software

architecture that guides the overall vision of

W1L3,

W1L4,

W1L6

Higher defect density

AND

Resource management

AND

Architecture

138

software product is one of the areas that is

greatly affected by requirements volatility.”

W2 “In today's increasingly volatile

environments, evolvability is quickly

becoming the most desirable characteristic

of information systems. Current

information systems still struggle to

provide these high levels of evolvability.

Based on the concept of stability from

systems theory, we require that information

systems should be stable with respect to a

set of anticipated changes in order to

exhibit high evolvability.”

W2L1,

W2L2

Volatility

AND

Anticipated changes

W3 “This paper describes the challenges of

handling changing requirements in software

companies. This empirical investigation

deals with the different sources of changes

and with the different approaches to

requirements evolution.”

W3L2,

W3L5

Requirements

AND

Changes user needs

W4 “Some of the challenges faced by most

software projects are tight budget

constraints and schedules, which often

make managers and developers prioritize

the delivery of a functional product over

other engineering activities, such as

software documentation. In particular,

having little or low-quality documentation

of the software architecture of a system can

have negative consequences for the project,

as the architecture is the main container of

the key design decisions to fulfill the

stakeholders' goals.”

W4L2&3,

W4L8,

W4L12,

W4L14

Budget constraints

AND

Low quality

documentation

AND

Architecture

AND

Stakeholder

W5 “The existing research and practices for

ACSE primarily focus on design-time

evolution and runtime adaptations to

accommodate changing requirements in

existing architectures.”

W5L2,

W5L5

Design Issues

AND

Architecture

W6 “The software architecture represents those

design decisions that are hardest to change.

Stability in this context means preserving

cross-architectural components

communications and structural

relationships unchanged.”

W6L2,

W6L4

Design Decisions

AND

Architectural crosscutting

concerns

W7 “Many papers have been published on

analysis and prediction of software faults

and/or failures, but few addressed the

software fixes made to correct the faults

and prevent failures from reoccurring.

Furthermore, the types of fixed software

were highly correlated with fault type and

W7L2,

W7L9

SW Fault

AND

Pre-release failure

AND

Post release failure

139

they had different distributions for

prerelease and post-release failures.”

W8 “Minimizing lead time allows software

companies to focus their resources on the

most profitable functionality and enables

them to remain competitive within the

quickly changing software market.”

W8L2 Resource Management

W9 “Existing studies have shown that structural

dependencies within code are good

predictors for code actual change impact

set—a set of entities that repeatedly

changing together to ensure a consistent

and complete change.”

W9L2,

W9L3

Dependencies

AND

Code Change

W10 “An adaptive system can modify its settings

at runtime as a response to changes in its

operational environment. To analyze this

kind of systems at design time is a difficult

task since it requires considering the system

together with the adaptation operations, and

taking into account how such adaptations

act on the system.”

W10L1&L8,

W10L4

Adaption to change

AND

Design issues

W11 “Updating the requirements specification

when software systems evolve is a manual

task that is expensive and time consuming.

Therefore, maintainers usually apply the

changes to the code directly and leave the

requirements unchanged.”

W11L1,

W11L5

Requirement

Specification

AND

Code changes

W12 “Software smells indicate design or code

issues that might degrade the evolution and

maintenance of software systems.

Detecting and identifying these issues are

challenging tasks. This paper explores,

identifies, and analyzes the existing

software smell detection techniques at

design and code levels.”

W12L1,

W12L2

Design Issues

AND

Code Issues

W13 “It is difficult to manage complex software

systems. Thus, many research initiatives

focus on how to improve software

development efficiency and

maintainability. However, the trend in the

industry is still alarming, software

development projects fail, and maintenance

is becoming more and more expensive. One

problem could be that research has been

focusing on the wrong things. Most

research publications address either process

improvements or architectural

improvements.”

W13L5,

W13L13

SW Maintenance

AND

Architecture

140

W14 “The integration of usage and decision

knowledge into CSE, practitioners

perceives accountability and traceability as

major benefits, while raising concerns

about its feasibility and user groups. Study

conclude that CSE remains partially

difficult to capture for practitioners, while

their attitude toward integrating usage and

decision knowledge into CSE is positive.”

W14L1,

W14L2,

4W14L3

Integration of usage

AND

Decision Knowledge

AND

Traceability

W15 “This paper proposes a set of six canonical

classes of architectural decisions derived

from the tasks described in the system

architecture body of knowledge and from

real system architecture problems. These

patterns can be useful in modeling

architectural decisions in a wide range of

complex engineering systems.”

W15L1&2,

W15L5

Architectural Decision

AND

Knowledge

W16 “A system’s provided user-centric

communication and coordination

mechanism have a significant impact on its

runtime management. Hence, it is highly

important for a system designer to

becoming aware of the most suitable

interaction mechanism and their

implications on system adaptability.”

W16L2,

W16L8

Communication

OR

Interaction Mechanism

AND

Adaption

W17 “Ambiguous representation of design

rationale goals is just one of the many

limitations that contribute to the intricacy

of design patterns; thereby this research

aims to introduce an approach to support

the structuring, evaluation, and analysis of

design patterns.”

W17L1,

W17L4

Design Implementations

AND

Design Patterns

W18 “The budget constraints and schedule

issues push developers to prioritize their

engineering activities. Such as

documentations. Whereby the architecture

is the main part which deals the software

design to fulfill the stakeholder goal.”

W18L1,

W18L6,

W18L4

Budget and Schedule

issues

AND

Stakeholder

AND

Documentation

W19 “Software traceability plays a critical role

in software maintenance and evolution.”

W19L1,

W19L2

Traceability

AND

SW Maintenance

SD1 “From a software architecture perspective,

this allows several issues to overlap

including, but not limited to: the

accumulation of technical debt design

decisions of individual components and

systems leading to coupling and cohesion

issues; sustainability debt and the broader

cumulative effects of flawed architectural

SD1L4,

SD1L9,

SD1L10

Technical Debt

AND

Code Smell

AND

Architecture

141

design choices over time resulting in code

smells, architectural brittleness, erosion,

and drift, which ultimately lead to decay

and software death.”

SD2 “Design of stable software architectures has

increasingly been a deep challenge to

software developers due to the high

volatility of their concerns and respective

design decisions. Architecture stability is

the ability of the high-level design units to

sustain their modularity properties and not

succumb to modifications. Architectural

aspects are new modularity units aimed at

improving design stability through the

modularization of otherwise crosscutting

concerns.”

SD2L5 Architectural complexity

SD3 “The importance of architectural

knowledge (AK) management for software

development has been highlighted over the

past ten years, where a significant amount

of research has been done.”

SD3L1 Knowledge

SD4 “Less attention has been paid to relating

requirements (R) with architecture (A) by

using well-defined semantics of traces.

Traces between R&A might be manually

assigned. This is time-consuming, and error

prone. Traces might be incomplete and

invalid.”

SD4L3,

SD4L2

Traceability

AND

Architecture

SD5 “This rigorous design takes place through

the incremental construction of a model

using the BIP (Behavior-Interaction-

Priorities) component framework. It allows

building complex designs by composing

simpler reusable designs enforcing given

properties.”

SD5L1 SW Design

SD6 “However, service adaptations often do not

consider software quality attributes and, if

they do, they rely on a single attribute in

isolation. In this paper, we present an

optimization model, which aims to

minimize the adaptation costs of a Service-

Oriented Architecture (SOA), in

correspondence with a certain change

scenario (i.e., a set of new requirements)

under reliability, availability and

performance tradeoff.”

SD6L1,

SD6L7

Adaption to Change

AND

Architecture

SD7 “Despite past empirical research in

software architecture decision making, we

have not yet systematically studied how to

perform such empirical research. Software

SD7L5,

SD7L4

Human Behavior

AND

Architecture

142

architecture decision making involves

humans, their behavioral issues and

practice.”

SD8 “We describe software architecture

evolution characterization, and propose an

architecture evolvability analysis process

that provides replicable techniques for

performing activities to aim at

understanding and supporting software

architecture evolution. “

SD8L2 Architecture

SD9 “Managing software architecture after the

deployment phase is a very complex task

due to frequent changes in the software

requirements and environment. The

software architecture must evolve in order

to tackle such changes. The goal of this

paper is to provide support for the decisions

that software architects make after

deployment.”

SD9L1&5 Architecture

SD10 “With today’s ever increasing demands on

software, software developers must

produce software that can be changed

without the risk of degrading the software

architecture. One way to address software

changes is to characterize their causes and

effects. A software change characterization

mechanism allows developers to

characterize the effects of a change using

different criteria, e.g. the cause of the

change, the type of change that needs to be

made, and the part of the system where the

change must take place.”

SD10L1,

SD10L4,

SD10L10

Requirement volatility

AND

Architecture

SD11 “The question of the “manner in which

existing software architecture affects

requirements decision- making” is

considered important in the research

community; however, to our knowledge,

this issue has not been scientifically

explored. We do not know, for example,

the characteristics of such architectural

effects.’

SD11L2,

SD11L5

Architecture

AND

Requirement Volatility

AND

Knowledge

SD12 “We introduce a documentation framework

for architecture decisions. The four

viewpoints, a Decision Detail viewpoint, a

Decision Relationship viewpoint, a

Decision Chronology viewpoint, and a

Decision Stakeholder Involvement

viewpoint satisfy several stakeholder

concerns related to architecture decision

management. “

SD12L2,

SD12L5

Architecture

AND

Stakeholder

143

SD13 “A descriptive model of decision-making,

developed by the authors, has been used to

analyze the protocols of the three software

design teams. The results give insight in

how software designers process their

activities, on the influence of individual or

team differences, and what the

consequences for their outcomes are.”

SD13L3,

SD13L4

SW Design

AND

Team

SD14 “This paper predicts the risk of change

propagation in terms of change propagation

probability and change impact. First, the

process of software requirement changes is

discussed. Then, a probabilistic model

based on design structure matrix (DSM) is

established to evaluate the risk of change

propagation from requirements to software

architecture.”

SD14L4

&

SD14L9

Requirement Volatility

AND

Architecture

SD15 “However, no systematic review has been

conducted previously to provide an

extensive overview of software architecture

evolvablity research.”

SD15L3 Architecture

SD16 “In the field of software architecture, a

paradigm shift is occurring from describing

the outcome of architecting process to

describing the Architectural Knowledge

(AK) created and used during architecting.

“

SD16L1,

SD16L4

Architecture

AND

Knowledge

SD17 “The goal of this paper is to automate the

traceability between software architectural

models and extra- functional results, such

as performance and security, by

investigating the uncertainty while bridging

these two domains.”

SD17L2

SD17L4

Traceability

AND

Security

SD18 “Managing architectural assumptions (AA)

during the software lifecycle, as an

important type of architecture knowledge,

are critical to the success of projects.”

SD18L1 Architectural

Assumptions

SD19 “Architectural assumption management is

critical to the success of software

development projects.”

SD19L1 Architectural

Assumptions

SD20 “Software architecture is a central element

during the whole software life cycle.

Among other things, software architecture

is used for communication and

documentation, for design, for reasoning

about important system properties, and as a

blueprint for system implementation.”

SD20L1,

SD20L5

Architecture

AND

SW Design

144

SD21 “This paper will show how architecture

design and analysis techniques rest on a

small number of foundational principles.

We will show how those principles have

been instantiated as a core set of

techniques.”

SD21L1 Architectural Complexity

SD22 “Runtime software architectures (RSA) are

architecture-level, dynamic representations

of running software systems, which help

monitor and adapt the systems at a high

abstraction level. The key issue to support

RSA is to maintain the causal connection

between the architecture and the system,

ensuring that the architecture represents the

current system, and the modifications on

the architecture cause proper system

changes.”

SD22L1,

SD22L10

Architecture

AND

Requirement Volatility

SD23 “As the potential frequency and scale of

software adaptations increase to meet

rapidly changing requirements and business

conditions, controlling such architecture

erosion becomes an important concern for

software architects and developers.”

SD23L2,

SD23L4

Adaption to change

AND

Architecture

SD24 “Requirements traceability (RT) is a core

activity in Requirements Engineering.

Various types of RT technologies have

been extensively studied for decades.”

SD24L1 Traceability

SD25 “Measuring the performance related

properties at the architectural level and

before implementation, is very important

while designing complex software

systems.”

SD25L2 Architectural Complexity

SD26 “Even in the eighties, the need of managing

software evolution has been detected as one

of the most complex aspects of the software

lifecycle. In this context, software

architecture has been highlighted as an

integral element of the software evolution

process. However, no matter how much

effort is put into the architecture, it must

eventually be translated into source code.”

SD26L4,

SD26L9

Architecture

AND

Code

SD27 “Documenting software architecture

rationale is essential to reuse and evaluate

architectures, and several modeling and

documentation guidelines have been

proposed in the literature.”

SD27L1,

SD27L3

Documentation

AND

Architecture

SD28 “The importance of Software Architecture

(SA) design has been acknowledged as a

very important factor for a high-quality

software development.”

SD28L2,

SD28L1

SW Design

AND

Architecture

145

SD29 “The remoteness of different decision

stakeholders, ranging from local

distribution in an office environment to

globally distributed teams, as well as the

different domain knowledge, expertise and

responsibilities of the stakeholders hinder

effective and efficient collaboration.

Existing tools and methods for

collaborative architectural decision making

focus mainly on sharing and reusing of

knowledge, making trade-offs, and

achieving consensus, but do not consider

the various stakeholders' decision making

constraints due to their roles in the

development process.”

SD29L1,

SD29L5,

SD29L10,

SD29L8

Stakeholder

AND

Knowledge

AND

Trade-off

AND

Architectural Complexity

SD30 “Change Requests (CRs) are key elements

to software maintenance and evolution.

Finding the appropriate developer to a CR

is crucial for obtaining the lowest,

economically feasible, fixing time.

Nevertheless, assigning CRs is a labor-

intensive and time consuming task.”

SD30L1 Requirement Change

OR

Requirement Volatility

SD31 “One important challenge is architectural

knowledge (AK) management, since agile

developers prefer sharing knowledge

through face-to-face interactions, while in

GSD the preferred manner is documents.”

SD31L1,

SD31l2

Architecture

AND

Knowledge

SD32 “Software architectures should be evaluated

during the early stages of software

development in order to verify whether the

Non-Functional Requirements (NFRs) of

the product can be fulfilled. “

SD32L1 Architecture

SD33 “We discuss how explicating the existing

architecture needs to be complemented by

social protocols to support the

communication and knowledge sharing

processes of the walking architecture.”

SD33L2,

SD33L3,

SD33L4

Architecture

AND

Communication

AND

Knowledge

A1 “In today’s volatile business environments,

collaboration between information systems,

both within and across company borders,

has become essential to success. A key

challenge is to manage the ever-growing

design complexity. In this article, we argue

that software architecture should play a

more prominent role in the development of

collaborative applications. “

A1L1,

A1L5,

A1L7,

A1L9

Dynamic business

Environment

AND

SW Design

AND

Architecture Complexity

AND

Communication Issues

A2 “The architecture of a software-intensive

system can be defined as the set of relevant

design decisions that affect the qualities of

the overall system functionality; therefore,

A2L1,

A2L3,

A2L9

Architecture

AND

SW Design

AND

146

architectural decisions are eventually

crucial to the success of a software project.

As such, there is no systematic way for

software engineers to choose among

decision-making techniques for resolving

tradeoffs in architecture design.”

Trade-off

A3 “Architecture-centric development

addresses the increasing complexity and

variability of software systems by focusing

on architectural models, which are

generally easier to understand and

manipulate than source code.”

A3L2,

A3L6

Architectural Complexity

AND

Code

A4 “Certifying safety-critical software and

ensuring its safety requires checking the

conformance between safety requirements

and design. Inspecting safety conformance

by comparing design models against safety

requirements requires safety inspectors to

browse through large models and is

consequently time consuming and error-

prone.”

A4L4,

A4L9

SW Design

AND

Error Prone

A5 “A complete and detailed (full) Design

Rationale Documentation (DRD) could

support many software development

activities, such as an impact analysis or a

major redesign.’

A5L1,

A5L2,

A5L3,

SW Design

AND

Documentation

AND

Design Implementations

A6 “Evaluating and ensuring the consistency

between user requirements and modeling

artifacts is a long-time issue for model-

based software design.”

A6L2,

A6L3,

A6L4

User Requirements

AND

SW Artefacts

AND SW Design

A7 “We use this adaptation scheme for

architecture-based self-healing of large

software systems. For this purpose, we

define the utility for large dynamic

architectures of such systems based on

patterns that define issues the self-healing

must address. Moreover, we use pattern-

based adaptation rules to resolve these

issues.”

A7L2 Self-healing Mechanism

A8 “To date, however, reflection is mainly

applied either to the software architecture

or its implementation. We know of no

approach that fully supports requirements

reflection that is, making requirements

available as runtime objects. Although

there is a body of literature on requirements

monitoring, such work typically generates

runtime artefacts from requirements and so

the requirements themselves are not

directly accessible at runtime. “

 Architecture

AND

Requirements

AND

SW Artefacts

147

APPENDIX-E

TABLE E: EXECUTION OF IMPLICIT/EXPLICIT REMOVAL

Sr # Paper ID Constructs Implicit

&

Explicit

Removal

1. W1, W7, A1, A4 Higher defect density, fault proneness, defect

proneness, SW failure logs, error handling, pre-

release failure, and post-release failure.

SW Defects

2. I6, W1, W4, W8,

W18

Cost overrun, resource estimation, time and

resource management, budget constraints, schedule

issues, and project size.

Resource

Management

3. I19, I21, W8,

W14, W15, SD3,

SD11, SD16,

SD29, SD31,

SD33

Decision knowledge and decision issues Knowledge

4. I5, I12, I14, W1,

W16, SD33, A1

Poor communication, user-centric communication,

coordination mechanism, interaction mechanism,

lack of communication, communication gap,

message exchange, and information distortion.

Communication

Issues

5. I6, I10, I13, W1,

W9, A1

External Dependencies, Change Dependencies,

Dependency on modules, Requirement

Dependencies, Dependencies b/w SW Components,

Structural Dependencies, Data dependencies,

Architectural Dependencies and Task

Dependencies.

Module

Dependencies

6. I6, I19, W14,

W17, W19, SD4,

SD17, SD24, A4

Inability to trace design, Tracing patterns, Design

rationale Traceability, Traceability Links, Tracing

Inconsistencies, and Tracing the architectural

Implementation.

Traceability

7. I14, A1 Dynamic Business Environment Dynamic

Business

Environment

8. I13, I15, I16, I17,

W4, W18, SD12,

SD29, A6

Stakeholder Synchronization, Stakeholder Goal,

Stakeholder Involvement, User Involvement, and

Stakeholder Objectives.

Stakeholder

9. I1, I2, I3,I8, I9,

I11, I16, I19, W1,

W2, W5, W6,

W15, W18, SD1,

SD4, SD6, SD7,

Architectural Knowledge, Architectural Decision,

Architectural Integration, Architectural

Assumptions, Architectural Erosion, Architectural

Erosion, Architectural Styles, Architectural

Specification, Structural Relationship, and

Architecture

148

SD8, SD9, SD10,

SD11, SD12,

SD14, SD15,

SD16, SD18,

SD19, SD20,

SD22, SD23,

SD26, SD27,

SD28, SD31,

SD32, SD33,

A2, A8

Architectural crosscutting concern.

10. I1, I3, I4,I5,

I8,I11, I13, I15,

I18, I21, I22,

W10, W12, W17,

W5, D5, SD13,

SD20, SD28, A1,

A2, A4, A5, A6

Design Decisions, Design Patterns, and Design

Issues.

SW Design

11. I10 Wrong Organizational Choice and Basic

Incompetency.

Wrong

Organizational

Choice.

12. I11, W10, W16,

SD6, SD23

Adaption to strategies and policies, Adaption

flexibility, Strategy change, and On-demand

Adaption.

Adaption

strategies and

Policies

13. I1, W13, W19,

A3

Maintenance Prediction and SW Maintenance. Maintenance

14. I7, A6, A8 SW Artefacts, Design Artefacts, Architecture Req.

Artifacts, Artefacts document management, and

safety artifacts.

SW Artefacts

15. W14 Integration of Usage and Utilization of Usage. Usage

16. I12, I19, SD29,

A2

Trade-off Analysis and Architectural trade-off. Trade-off

17. I13, W9, W11,

W12, SD2,

SD26, A3

Code Smell, Coherent set of code, and code issues. Code

18. SD1 Architectural Technical Debt. and Technical Debt

Design.

Technical Debt.

19. SD7, SD9, A6 Human Behaviour and Human cognitive constraints. Human

Behaviour

20. W9, SD22,

SD30, SD8

Lack of verification, Emotional and relational

problems, and lack of clarity in the business

objective.

Lack of

verification

21. I2, I5, SD13 Team cohesion, Developer focus, and effective

collaboration.

Team Cohesion

22. I12 Lack of Explicit Linkage Lack of

Explicit

Linkage

23. I6, W1, W4,

W18,SD27, A5

Architectural Documentation, Poor Documentation,

and low-quality documentation.

Documentation

149

24. I21, W4, W13,

SD2, SD21,

SD25, SD29, A1,

A3

Increased complexity and Architectural complexity. Complexity

concerns

25. I3, I8, I9, I13,

I16, I17, I18, W1,

W2, W3,W9,

W11, SD10,

SD11, SD14,

SD22, SD30,

SD8

Ambiguous Requirement, Awareness of

requirement volatility, High level of Evaluability,

Changing user needs, Tracing the requirement,

requirement specification, non-functional

requirements, unnecessary changes, anticipated

changes, changing to code, knowledge of initial

changes, and scope change.

Requirement

Volatility

26. I3, I11 Quality Assurance, Maintaining quality attributes,

and Quality Attributes.

Quality

Assurance

Concerns

27. SD17 Security Security

Concerns

28. A7 Self-Healing Mechanism Self-Healing

Mechanism

150

APPENDIX-F

EXPERT REVIEW EVALUATION FORM

INVITATION LETTER

Respected Sir/Madam,

 My name is Sumaira Anwar Baig and I am a student of MS (Software Engineering) at

the National University of Modern Languages (NUML), Islamabad. The research topic of my

MS degree is ‘AN EMPIRICAL STUDY ABOUT POSITIVE IMPLICATIONS OF

REQUIREMENTS VOLATILITY ON THE SOFTWARE ARCHITECTURE’ on account of my

MS thesis. Whereby, this upcoming study will be able to intimate about the positive

implications of requirements volatility (if any) and their impact on the Software Architecture.

For this, I have conducted a Systematic Literature Review (SLR) and came up with a list of

around 29 factors. To proceed, there is a dire need to analyze- these identified factors from the

worthy experts/practitioners of the field. As a result, I will be able to accomplish my second

phase of research work. Accordingly, an ‘Expert Review’ is being carried out. Therefore, you

are requested to spare some time to validate my research tasks, which would be highly

appreciated and I will be extremely grateful to you.

Yours Truly,

Sumaira Anwar Baig

Student of MS (SE)

Department: Software Engineering (SE)

National University of Modern Languages (NUML),

Islamabad.

151

SECTION I:

PERSONAL INFORMATION OF EXPERT REVIEW:

Name:

Designation:

Year of Experience:

Expertise:

Domain:

Educational Qualification:

Additional Skills:

SECTION II:

TASKS TO BE PERFORMED BY THE REVIEWER:

Task 1: To verify the naming conventions for a certain factor generated from their sub-

factors/data units.

Task 2: To verify the accuracy of each identified factor’s classification in terms of category 1,

category 2, and category 3.

Category 1: Internal Factors

 Internal factors refer to anything within the company and under the control of

the firm/company.

Category 2: External Factors

 External factors refer to anything outside the firm/company that impacts its

success.

Category 3: Both (External & Internal)

 Factors refer to the controllable and uncontrollable aspects that could affect the

upcoming system.

Acronyms:

 KLOC: Thousands of Lines of Code

 SW: Software

152

F

 #

Sub factors

&

Data Units

Factors

Description

Categor

y 1

(Intern

al)

Category

2

(External)

Categor

y 3

(Both)

1. Higher Defect Density SW Defects This indicates the

number of

defects

confirmed in

SW/module.

Enable one to

decide if a piece

of code is ready

to release.

Represent the

KLOC.

I _ _

Defect Proneness

SW failure logs

Error Handling

Pre-release failure

Post-release failures

2. Cost overrun

Resource

Management

Indicates project

resources i.e.

time constraints

or deadlines,

budgeting,

scheduling, and

tracking.
_ _ Both

Resource Estimation

Time and Resource

Management

Budget Constraints

Schedule Issues

Project Size

3. Decision Knowledge

 Knowledge

Indicates the pre-

determined

criteria to

measure and

ensure the

optimal outcome

for a specific

topic.

I _ _
Decision Issues

4. Poor Communication

Communication

Issues

Indicates

discrepancy B/W

said or heard.

Moreover, also

intimates about

the process of

communication.

_ _ Both

User Centric

Communication

Coordination

Mechanism

Interaction Mechanism

Lack of

Communication

Communication Gap

Message Exchange

Information Distortion

153

5. External Dependencies

Modules

Dependencies

Indicates the

relationship b/w

project activities

and non-project

activities. Enable

status-completed

on schedule.

I _

_

Change Dependencies

Dependency on modules

Requirement

Dependencies

Dependency B/w SW

Components

Structural Dependencies

Data dependencies

Architectural

Dependencies

Task Dependencies

6. Inability to trace design

Traceability

Indicates the

extent to which

documentation or

code can be

backtracked to its

point of origin.

Ensure the ability

to verify the

history, location,

and application.

I
_ _

Tracing patterns

Design rationale

Traceability

Traceability Links

Tracing Inconsistencies

Tracing the architectural

Implementation

7. Dynamic Business

Environment

Dynamic

Business

Environment

Indicates rapid

changes.

Managers and

organizations

must need to

consider this

quickly.

_ _ Both

154

8. Stakeholder

Synchronization

Stakeholder

Indicates

variations at the

ends of the goals,

and objectives of

the stakeholders.

_ _ Both

Stakeholder Goal

Stakeholder

Involvement

User Involvement

Stakeholder Objectives

9. Architectural

Knowledge

Architecture Indicates the

vision of

architecture

design as well as

their decisions

and assumptions.

Represents the

upcoming

system.

I
_ _

Architectural Decision

Architectural Integration

Architectural

Assumptions

Architectural Erosion

Architectural Styles

Architectural

Specification

Structural Relationship

Architectural

crosscutting concern

10. Design Decision

SW Design Indicates the

complete vision

of the plan

design and

organize decision

and challenges

towards

implementation

of the design.

I _

_

Design Patterns

Design Issues

11. Wrong Organizational

Choice

Wrong

Organizational

Choice

Indicates poor

planning sets,

Inadequate

support, lack of

resources, lack of

priorities, and

inadequate

change and

leadership.

_ _ Both

Basic Incompetency

155

12. Adaption strategies and

policies

Adaption

Strategies and

Policies

Indicates the

changing

conditions and

intimates the

triggers fired by

a change user,

service, or

network.

I _ _

Adaption Flexibility

Strategy Change

On-Demand Adaption

13. Maintenance Prediction

Maintenance Indicates

attributes that

bear the

capability of SW

to maintain its

level of

performance.

I _ _
SW Maintenance

14. SW artifacts

SW Artefacts Indicates the core

development

programs and

also represents

the development

process, which

may include

design,

documents, test

matrices,

prototypes, data

models and

diagrams etc.

I _ _

Design Artefacts

Architecture Req.

Artefacts

Artefacts documents

management

Safety Artefacts

15. Integration of Usage

Usage Indicates a

process of

bringing together

the different

types of software

sub-systems. As

a result, a unified

single system is

generated.

I _ _
Utilization of Usage

16. Trade-off Analysis

Trade-off

Indicates the

evaluation

method of SW

architecture

relative to quality

attributes goals.

I _ _

Architectural Trade-off

156

17. Code Smell

Code Indicates the

structures in the

source code and

intimates deeper

problems and

violations of

fundamental

design principles.

I _ _

Coherent sets of code

Code Issues

18. Architectural Technical

Debt

Technical Debt.

Indicates sub-

optimal

architectural

design/decisions

and

implementation

choices.

I _ _

Technical Debt Design

19. Human Behaviour Human

Behaviour

Indicates the

human

involvement or

group to respond

towards the

project.

_ E

_

Human Cognitive

Constraints

20. Lack of Verification

Lack of

Verification

Indicates the

confirmation of

the pre-requisite,

shortage, or

absence of

desired

requirements.

_ _ Both

Emotional and

Relational Problems

Lack of Clarity in

Business Objectives

21. Team Cohesion

Team Cohesion Indicates the

team member's

relationship and

intimates their

positivity to stay

in the team.
I _ _

Developer Focus

Effective Collaboration

22. Lack of Explicit

Linkage

Lack of Explicit

Linkage

Indicates about

lack of

standardization

of the system and

team integration.

I _ _

157

23. Architectural

Documentation

Documentation Indicates the

drawing plans

with scale

measurement,

specification of

the type and

quality of

material to be

used, and other

particulars of the

upcoming

system.

I _ _

Poor Documentation

Low-Quality

Documentation

24. Increased Complexity

Complexity

Concerns

Indicate the

measure of the

link b/w

architectural

complexity that

arises within the

system due to

lack or

breakdown of

hierarchy or

modularity and

intimates project

cost vibrations.

I _ _

Architectural

Complexity

25. Ambiguous

Requirement

Requirement

Volatility

Indicates

variations in the

project in terms

of modifications,

upgrading,

changes, or new

adoptions.

_ _ Both

Awareness of

Requirement Volatility

High Level of

Evaluability

Changing User Needs

Tracing the

requirements

Requirement

Specification

Non-Functional

Requirements

158

Unnecessary changes

Anticipated changes

Changing to code

Knowledge of Initial

Changes

Scope Change

26. Quality Assurance

Concerns

Quality

Assurance

Concerns

Indicates the

monitoring terms

used towards the

adopted methods

of the upcoming

systems, to

ensure the

quality.

I _ _
Maintaining quality

Attributes

Quality Attributes

27.

Security

Security

Concerns

Indicates the

threat and

vulnerability of

the system assets.

I _ _

28. Self-Healing Issues Self-Healing

Mechanism

Indicates the

detection and

reaction to the

malfunctions of

the system.

_ _ Both

159

APPENDIX-G

SECTION-I

SURVEY FORM

INVITATION LETTER

Respected Sir/Madam,

 We would like to invite you to participate in a research survey conducted by Ms. Sumaira

Anwar Baig, daughter of Muhammad Anwar Baig scholar of the National University of Modern

Languages (NUML), Islamabad as a part of their MS thesis work. This survey aims to elicit the

positive implications of Requirements Volatility on the software architecture implemented by the

industry, for the successful completion of their project.

2. For this purpose, we would like to invite you to participate in this survey. Your participation

in this survey is entirely voluntary. We expect that it should take your 20 minutes, only. However, if

you require, we could share the outcomes of this research after the finalization of the results.

3. All information gathered through the questionnaire survey is for research purposes only. Such

information will be treated in the STRICTEST CONFIDENCE and any publication (s) from this study

will present information in aggregate form such that individual organizations or individual respondents

participating in the research cannot be identified.

4. You are free to withdraw your participation from this research at any time you wish and

without giving any reason.

5. We should appreciate it if you would agree to participate in this research.

Sumaira Anwar Baig,

Scholar of MS (SE),

Software Engineering Department,

National University Modern Languages (NUML),

Islamabad.

Email: sumaira.numl006@gmail.com

 sonia.baig2008@gmail.com

Dr. Huma Hayat Khan,

Supervisor,

Head of Department (Software Engineering),

National University of Modern Languages (NUML),

Rawalpindi.

Email: hnauman@numl.edu.pk

Dr. Muhammad Noman Malik,

Co-Supervisor,

Head of Department (Computer Science),

National University Modern Languages

(NUML),

Rawalpindi.

Email: mnauman@numl.edu.pk

160

SECTION II:

PERSONAL INFORMATION

1.1 Practitioners Detail

Full Name:

Designation:

Qualification:

Software Development experience (in the year) in current/previous organizations:

Organization Address:

Email:

Phone Cell:

Have your company considered the positive implications of requirement volatility on

software architecture?

 Yes No

Homan many projects have you performed on the twin peaks of the SDLC i.e.

requirement volatility and software architecture?

Write the name of one such project.

1.1 Company Demographics

Company Organization country in which it is located?

What is the scope of your company? (Please tick as appropriate)

 National Multi-National Don’t know

Approximately how many staff is employed by your company/organization? (Please

tick as appropriate)

 Less than 20

 20-100

 Greater than 100

 Not sure

161

What type of certifications your company has achieved?

 CMMI

 ISO

 Other

What type of software is your company concerned with? (You may tick more than one)

 Web Application

 Mobile application development

 Database development

 Real-time systems

 Games development

 Web Design

 System Software

 Graphics Designing

 Desktop application

 Multimedia Software

 Other

Is your company care about requirement volatility and its impact on software

architecture?

 Yes No

Is your company cares ever participated in the development of any software project to

consider the fragile nature of requirements volatility, throughout the development? If

yes, write the name of at least one such project.

SECTION III:

2.1 Empirical Investigation about positive implications of Requirements Volatility on

Software Architecture (RVSAs)

 Initially, the literature highlighted the implications of the requirements volatility

factors on SW architecture adopted by the practitioners. Accordingly, define the category of

each factor based on three different categories i.e. A, B, and C, respectively. Where, the ‘A’

represents the ‘Internal’ factor, ‘B’ represents the ‘External Factor’ and ‘C’ represents the

‘both’. In this section, we intended to validate whether these implementations raised ‘positive’

162

impacts on software architecture, based on your experience, please check the appropriate box,

given in the front of each practice placed in the table, and suggest any other practice, if any.

RVSA1-Software Defects

 This is a category C type factor i.e. both which indicate the numbers of defects

confirmed in the software module e.g. higher defect density, defect proneness, SW failure

logs, Error handling, pre-release and post-release failures. Further, enable one to decide if a

piece of code is ready to release. Accordingly, represent the KLOC.

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

RVSA2-Resource Management

 This is a category C type factor i.e. both which deal with the project resources i.e. cost

overrun, resource management, time constraints or deadlines, budgeting, scheduling, and

tracking related matters.

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

RVSA3-Knowledge

 This is a category A type factor i.e. internal which indicates the knowledge i.e.

Decision Knowledge, Decision issues, and pre-determined criteria to measure and ensure the

optimal outcome for a specific task.

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

163

RVSA4-Communication Issues

 This is a category C type factor i.e. both indicate about discrepancy B/W said or heard.

Moreover, also intimates about the process of communication and their issues i.e. poor

communication, user-centric communication, coordination mechanism, communication gap,

information distortion, and message exchange-related matters.

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

RVSA5-Dependencies

 This is a category C type factor i.e. both which indicate the dependencies b/w project

and non-project activities i.e. change dependencies, external dependencies, data dependencies,

and task dependencies. Moreover, more curiously focused on architectural and module

dependencies.

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

RVSA6-Traceability

This is a category A type factor i.e. Internal which deals with tracking related matters

to its point of origin i.e. tracing patterns, traceability links, and tracing towards design and

architectural implementation. Besides this, verify the inabilities to trace a design or trace

inconsistencies.

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

164

RVSA7-Dynamic Business Environment

 This is a category C type factor i.e. both which deal with the matters of rapid changes

towards business environment i.e. taste and preferences and changes in technology issues.

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

RVSA8-Stakeholder Synchronization

 This is a category C type factor i.e. both which indicate the stakeholder goals and

objectives including user involvement-related matters.

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

RVSA9-Architecture

 This is a category A type factor i.e. internal which represents the architectural design

and deals with the architecture in terms of their decision, assumptions, styles, specifications,

and integrations-related matters.

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

RVSA10-Design Implementations

 This is a category C type factor i.e. both which deal with the part of the SW design i.e.

Design decisions, design patterns, and design issues related matters.

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

165

RVSA11-Organizational Leadership

 This is a category C type factor i.e. both which deal with the organization's choices,

planning, resources, priorities, and leadership-related matters.

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

RVSA12-Adaption to change

 This is a category C type factor i.e. both which deal with the adaption strategies and

policies towards implementation of changes and intimates about the triggers fired by the

change user, services, and conditions.

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

RVSA13-SQW Maintenance

 This is a category A type factor i.e. internal which deals with the SW maintenance-

related matters and has capabilities towards maintenance prediction to its level of

performance.

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

RVSA14-Artefacts

This is a category A type factor i.e. internal which deals with the core development

programs and also represents their process including design documentation, test matrices,

prototypes, data models and diagrams, etc.

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

166

RVSA15-Integration of Usage

 This is a category A type factor i.e. internal which deals with the process of

bringing together the different types of software sub-systems, to consider the utilization of

usage regarding the continuous SE process.

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

RVSA16-Trade-off

 This is a category A type factor i.e. internal which deals with the evaluation method

of SW architecture relative to its quality attribute goals in terms of architectural trade-off.

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

RVSA17-Code

 This is a category A type factor i.e. internal which indicates the structures in the

source code and intimates deeper problems and violations of fundamental design principal.

Moreover, represents the code smell, a coherent set of rules, and code-related matters.

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

RVSA18-Technical Debt.

 This is a category A type factor i.e. internal which indicates the optimal

architectural design/decisions and implementation choices. Where, the code-level technical

debts are detected and analyzed by the static analyzers. Moreover, represents the choices

about the architectural structures, frameworks, technologies, languages, etc.

Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

167

RVSA19-Human Behavior

 This is a category C type factor i.e. both indicate the human involvement and group

to respond concerning the human cognitive constraints and behavior.

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

RVSA20-Team

 This is a category C type factor i.e. both which indicate the developer focus, team

members, and their effective collaboration.

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

RVSA21-Integration of Linkage

 This is a category C type factor i.e. both which indicate the standardization of the

system and team integration.

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

RVSA22-Documentation

 This is a category A type factor i.e. internal which deals with the drawing plans with

scale measurements, specification of types, and quality of material to be used. Besides this,

deal with the low quality or poor quality documentation sub-factors.

Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

168

RVSA23-Architectural Complexity

 This is a category A type factor i.e. internal which deals with the architectural

complexity and their sub-factor i.e. increased complexity that arises within the system due to

lack of breakdown of hierarchy or modularity and intimates about the project cost variations.

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

RVSA24-Requirement Volatility

 This is a category C type factor i.e. both which indicate the modifications,

upgrading, changes, or new adoptions. Besides this, more specifically deal with all possible

sub-factors i.e. ambiguous requirement, awareness of requirement volatility, High level of

evaluability, changing user needs, non-functional requirements, unnecessary changes, and

scope change-related matters.

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

RVSA25-Quality Assurance

 This is a category C type factor i.e. both, which deal with the quality assurance

concerns towards maintaining the quality attributes and more specifically ensuring the quality

of the upcoming product.

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

RVSA26-Security

 This is the category C type factor i.e., which deals with the security concerns of the

systems in terms of threat and vulnerability of the systems.

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

169

RVSA27-Self Healing Mechanism

 This is the category C type factor i.e., which deals with the healing mechanism

regarding the detection and reaction to the malfunctions of the system.

 Strongly Agree

 Agree

 Neutral

 Disagree

 Strongly Disagree

170

APPENDIX-H

FINAL LIST OF IDENTIFIED LIST OF FACTORS ALONG WITH THEIR

CATEGORIES.

Sr No. Paper ID Sub-factors/Data Units Factor (s) Category

1. W1, W7, A1, A4 Higher Defect Density

SW Defects Both

Defect Proneness

SW failure logs

Error Handling

Pre-release failure

Post-release failures

2. I6, W1, W4,

W8, W18

Cost overrun

Resource

Management
Both

Resource Estimation

Time and Resource Management

Budget Constraints

Schedule Issues

Project Size

3. I19, I21, W8,

W14, W15,

SD3, SD11,

SD16, SD29,

SD31, SD33

Decision Knowledge

Knowledge Internal

Decision Issues

4. I5, I12, I14, W1,

W16, SD33, A1

Poor Communication

Communication

Issues
Both

User-Centric Communication

Coordination Mechanism

Communication Gap

Message Exchange

Information Distortion

5. I6, I10, I13, W1,

W9, A1

External Dependencies

Dependencies Both

Change Dependencies

Dependency on modules

Requirement Dependencies

Data dependencies

Architectural Dependencies

Task Dependencies

6. I6, I19, W14,

W17, W19,

SD4, SD17,

SD24, A4

Inability to trace a design

Traceability Internal

Tracing patterns

Design rationale Traceability

Traceability Links

Tracing Inconsistencies

Tracing the architectural

Implementation

7. I14, A1 Dynamic Business Environment

Dynamic Business

Environment

Both

171

8. I13, I15, I16,

I17, W4, W18,

SD12, SD29, A6

Stakeholder Synchronization

Stakeholder Both Stakeholder Goal & Objectives

Stakeholder Involvement

9. I1, I2, I3,I8, I9,

I11, I16, I19,

W1, W2, W5,

W6, W15, W18,

SD1, SD4, SD6,

SD7, SD8, SD9,

SD10, SD11,

SD12, SD14,

SD15, SD16,

SD18, SD19,

SD20, SD22,

SD23, SD26,

SD27, SD28,

SD31, SD32,

SD33, A2, A8

Architectural Knowledge

Architecture Internal

Architectural Decision

Architectural Integration

Architectural Assumptions

Architectural Erosion

Architectural Styles

Architectural Specification

Architectural crosscutting concern

10. I1, I3, I4, I5, I8,

I11, I13, I15,

I18, I21, I22,

W5, W10, W12,

W17, SD5,

SD13, SD20,

SD28, A1, A2,

A4, A5, A6

Design Decision

SW Design

&

Design Implementation

Internal
Design Patterns

Design Issues

11. I10 Wrong Organizational Choice Organizational

Leadership
Both

Basic Competency

12. I11, W10, W16,

SD6, SD23

Adaption Strategies and Policies

Adaption to Change Both
Adaption Flexibility

Strategy Change

On-Demand Adaption

13. I1, W13, W19,

A3

Maintenance Prediction
SQW Maintenance Internal

SW Maintenance

14. I7, A6, A8 SW Artefacts

Artifacts Internal
Design Artefacts

Architecture Req. Artifacts

Artifacts Documents Management

15. W14 Integration of Usage
Integration of Usage Internal

Utilization of Usage

16. I12, I19, SD29,

A2

Trade-off Analysis
Trade-off Internal

Architectural Trade-off

17. I13, W9, W11,

W12, SD2,

SD26, A3

Code Smell

Code Internal Coherent sets of code

Code Issues

18. SD1 Architectural Technical Debt

Technical Debt.

Internal

Technical Debt Design

172

19. SD7, SD9, A6 Human Behavior
Human Behaviour Both

Human Cognitive Constraints

20. I2, I5, SD13 Team Cohesion
Team Both

Developer Focus

21. I12 Lack of Explicit Linkage Integration of Linkage Both

22. I6, W1, W4,

W18, SD27, A5

Architectural Documentation

Documentation Internal Poor Documentation

Low-Quality Documentation

23. I21, W4, W13,

SD2, SD21,

SD25, SD29,

A1, A3

Increased Complexity

Architectural

Complexity
Internal

Architectural Complexity

24. I3, I8, I9, I13,

I16, I17, I18,

W1, W2, W3,

W9, W11,

SD08, SD10,

SD11, SD14,

SD22, SD30

Ambiguous Requirement

Requirement Volatility Both

Awareness of Requirement Volatility

High Level of Evaluability

Changing User Needs

Tracing the requirements

Requirement Specification

Non-Functional Requirements

Unnecessary changes

Anticipated changes

Changing to code

Knowledge of Initial Changes

Scope Change

Lack of Verification

Emotional and Relational Problems

Lack of Clarity in Business

Objectives

25. I3, I11 Quality Assurance Concerns

Quality Assurance Both Maintaining Quality Attributes

Quality Attributes

26. SD17 Security Security Internal

27. A7 Self-Healing Mechanism Self-Healing Mechanism Both

173

APPENDIX-I

LIST OF INCLUDED PRIMARY STUDIES ALONG WITH THE PAPER

ID.

Sr No. Paper ID Study Name

1. I1 A Prescriptive Approach to Quality-Focused System Architecture

2. I2 Evaluating System Architecture Quality and Architecting Team

Performance Using Information Quality Theory

3. I3 SAM-SoS: A Stochastic Software Architecture Modelling and Verification

Approach for Complex System-of-Systems

4. I4 Automatically Detecting and Tracking Inconsistencies in Software Design

Models

5. I5 Decision-Making Assistance in Engineering Change Management Process

6. I6 Comparative Analysis of Requirement Change Management Challenges

Between in-House and Global Software Development: Findings of

Literature and Industry Survey

7. I7 An Industrial Survey of Safety Evidence Change Impact Analysis Practice

8. I8 Structuring Software Requirements for Architecture Design

9. I9 Software Architecture Matching by Meta-model Extension and Refinement

10. I10 Product Line Requirements Reuse Based on Variability Management

11. I11 Quality-Driven Self-Adaptation: Bridging the Gap between Requirements

and Runtime Architecture by Design Decision

12. I12 Priority-Awareness of Non-Functional Requirements under Uncertainty

13. I13 An initial evaluation of requirements dependency types in change

propagation analysis

14. I14 A Method of Specifying and Classifying Requirements Change

15. I15 Towards requirements aware systems: Run-time resolution of design-time

assumptions

16. I16 RADAR: A Lightweight Tool for Requirements and Architecture Decision

Analysis

17. I17 Towards search-based modeling and analysis of requirements and

architecture decisions

18. I18 Run-time Resolution of Uncertainty

19. I19 Assessing Architectural Patterns Trade-offs using Moment-based Pattern

Taxonomies

20. I20 Improving Software Performance and Reliability with an Architecture-

Based Self-Adaptive Framework

21. I21 Managing Design Time Uncertainty

22. I22 Reducing Uncertainty in Architectural Decisions with AADL

23. I23 Inconsistency Management between Architectural Decisions and Designs

Using Constraints and Model Fixes

24. W1 Impact of requirements volatility on software architecture: How do

software teams keep up with ever-changing requirements?

25. W2 Towards evolvable software architectures based on systems theoretic

stability

26. W3 Managing changes in requirements: an empirical investigation

27. W4 An optimization-based tool to support the cost-effective production of

software architecture documentation

https://ieeexplore.ieee.org/document/7105359/
https://ieeexplore.ieee.org/document/7837688/
https://ieeexplore.ieee.org/document/7837688/
https://ieeexplore.ieee.org/document/5432227/
https://ieeexplore.ieee.org/document/5432227/
https://ieeexplore.ieee.org/document/5638631/
https://ieeexplore.ieee.org/document/8808861/
https://ieeexplore.ieee.org/document/8808861/
https://ieeexplore.ieee.org/document/8808861/
https://ieeexplore.ieee.org/document/7450627/
https://ieeexplore.ieee.org/document/7985693/
https://ieeexplore.ieee.org/document/7985693/
https://ieeexplore.ieee.org/document/8115725/
https://ieeexplore.ieee.org/document/8115725/
https://ieeexplore.ieee.org/document/5676339/
https://ieeexplore.ieee.org/document/5676339/
https://ieeexplore.ieee.org/document/5718862/
https://ieeexplore.ieee.org/document/6824128/
https://ieeexplore.ieee.org/document/6824128/

174

28. W5 Classification and comparison of architecture evolution reuse knowledge—

a systematic review

29. W6 Measuring stability of object-oriented software architectures

30. W7 Exploring the missing link: an empirical study of software fixes

31. W8 Exploring factors affecting decision outcome and lead time in large-scale

requirements engineering

32. W9 Do code data sharing dependencies support an early prediction of

software's actual change impact set?

33. W10 A procedural and flexible approach for specification, modeling, definition,

and analysis for self-adaptive systems

34. W11 Supporting requirements update during software evolution

35. W12 Software smell detection techniques: A systematic literature review

36. W13 Increasing software development efficiency and maintainability for

complex industrial systems – A case study

37. W14 Continuous software engineering and its support by usage and decision

knowledge: An interview study with practitioners

38. W15 Patterns in System Architecture Decisions

39. W16 Analyzing runtime adaptability of collaboration patterns

40. W17 Pattern detection and design rationale traceability: an integrated approach

to software design quality

41. W18 An optimization-based tool to support the cost-effective production of

software architecture documentation

42. W19 The impact of traceability on software maintenance and evolution: A

mapping study

43. SD1 Software sustainability: Research and practice from a software architecture

viewpoint

44. SD2 Stability assessment of aspect-oriented software architectures: A

quantitative study

45. SD3 10 years of software architecture knowledge management: Practice and

future

46. SD4 Generation and validation of traces between requirements and architecture

based on formal trace semantics

47. SD5 Early validation of system requirements and design through correctness-

by-construction

48. SD6 Optimization of adaptation plans for a service-oriented architecture with

cost, reliability, availability, and performance trade-off

49. SD7 Empirical research for software architecture decision making: An analysis

50. SD8 Software architecture evolution through evolve-ability analysis

51. SD9 Managing the evolution of software architecture at minimal cost

underperformance and reliability constraints

52. SD10 Characterizing software architecture changes: A systematic review

53. SD11 An exploratory study of architectural effects on requirements decisions

54. SD12 A documentation framework for architecture decisions

55. SD13 Accessing decision-making in software design

56. SD14 Impact propagation and risk assessment of requirement changes for

software development projects based on design structure matrix

57. SD15 A systematic review of software architecture evolution research

58. SD16 Advanced quality prediction model for software architectural knowledge

sharing

https://www.sciencedirect.com/science/article/pii/S0164121210001779
https://www.sciencedirect.com/science/article/pii/S0164121211002755

175

59. SD17 Exploiting traceability uncertainty between software architectural models

and extra-functional results

60. SD18 A survey on software architectural assumptions

61. SD19 Evaluation of a process for architectural assumption management in

software development

62. SD20 Towards supporting the software architecture life cycle

63. SD21 Scaling up software architecture analysis

64. SD22 Supporting runtime software architecture: A bidirectional-transformation-

based approach

65. SD23 Controlling software architecture erosion: A survey

66. SD24 Requirements traceability technologies and technology transfer decision

support: A systematic review

67. SD25 Performance measurement of models specified through component-based

software architectural styles

68. SD26 Reconciling software architecture and source code in support of software

evolution

69. SD27 Bridging the gap between software architecture rationale formalisms and

actual architecture documents: An ontology-driven approach

70. SD28 The strengths and weaknesses of software architecture design in the RUP,

MSF, MBASE, and RUP-SOA methodologies: A conceptual review

71. SD29 Automatic enforcement of constraints in real-time collaborative

architectural decision making

72. SD30 Towards semi-automated assignment of software change requests

73. SD31 Towards a reduction in architectural knowledge vaporization during agile

global software development

74. SD32 Validating a model-driven software architecture evaluation and

improvement method: A family of experiments

75. SD33 Software architecture awareness in long-term software product evolution

76. A1 Architecture-centric support for adaptive service collaborations

77. A2 Decision-making techniques for software architecture design: A

comparative survey

78. A3 Maintaining Architecture-Implementation Conformance to Support

Architecture Centrality: From Single System to Product Line Development

79. A4 Traceability and SysML design slices to support safety inspections: A

controlled experiment

80. A5 The value of design rationale information

81. A6 Ensuring the Consistency between User Requirements and Task Models: A

Behaviour-Based Automated Approach

82. A7 Improving Scalability and Reward of Utility-Driven Self-Healing for Large

Dynamic Architectures

83. A8 Requirements reflection: requirements as runtime entities

https://www.sciencedirect.com/science/article/pii/S0164121210003286
https://www.sciencedirect.com/science/article/pii/S0164121210003286
https://www.sciencedirect.com/science/article/pii/S0164121211002044
https://www.sciencedirect.com/science/article/pii/S0164121218301754
https://www.sciencedirect.com/science/article/pii/S0164121218301754
https://www.sciencedirect.com/science/article/pii/S0263224115003024
https://www.sciencedirect.com/science/article/pii/S0263224115003024
https://www.sciencedirect.com/science/article/pii/S0164121216302114
https://www.sciencedirect.com/science/article/pii/S0164121216302114
https://www.sciencedirect.com/science/article/pii/S0167642310001218
https://www.sciencedirect.com/science/article/pii/S0167642310001218
https://www.sciencedirect.com/science/article/pii/S0920548916300058
https://www.sciencedirect.com/science/article/pii/S0920548916300058
https://www.sciencedirect.com/science/article/pii/S0164121215000345
https://www.sciencedirect.com/science/article/pii/S0164121215000345
https://www.sciencedirect.com/science/article/pii/S0164121216000352
https://www.sciencedirect.com/science/article/pii/S0950584914001359
https://www.sciencedirect.com/science/article/pii/S0950584914001359
https://www.sciencedirect.com/science/article/pii/S0164121210001743

