

AN INDUSTRY SURVEY OF

DEMOTIVATORS FOR SCALING UP

AGILE METHODOLOGY

By

OSAMA TARIQ

NATIONAL UNIVERSITY OF MODERN LANGUAGES

ISLAMABAD

MAY, 2022

An Industry Survey of Demotivators for Scaling Up Agile

Methodology

By

OSAMA TARIQ

BSCS, University of Arid Agriculture, Rawalpindi, 2018

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

In Software Engineering

To

FACULTY OF ENGINEERING & COMPUTER SCIENCES

NATIONAL UNIVERSITY OF MODERN LANGUAGES ISLAMABAD

 Osama Tariq, 2022

THESIS AND DEFENSE APPROVAL FORM

The undersigned certify that they have read the following thesis, examined the

defense, are satisfied with overall exam performance, and recommend the thesis

to the Faculty of Engineering and Computer Sciences for acceptance.

Thesis Title: An Industry Survey of Demotivators for Scaling Up Agile Methodology

Submitted by: Osama Tariq

Registration #: MSSE/Ibd/S19

Master of Science in Software Engineering

Degree name in full

Software Engineering

Name of Discipline

Dr. Muzafar Khan

Name of Research Supervisor

Signature of Research Supervisor

Dr. Basit Shahzad

Name of Dean (FE&CS)

Signature of Dean (FE&CS)

Prof. Dr. Muhammad Safeer Awan

Name of Pro-Rector Academics

Signature of Pro-Rector Academics

May 18th, 2022

Date

ii

AUTHOR’S DECLARATION

I Osama Tariq

Son of Tariq Mahmood Khokhar

Registration # MSSE/Ibd/S19

Discipline Software Engineering

Candidate of Master of Science in Software Engineering (MSSE) at the National

University of Modern Languages do hereby declare that the thesis An Industry

Survey of Demotivators For Scaling Up Agile Methodology submitted by me in

partial fulfillment of MSSE degree, is my original work, and has not been submitted

or published earlier. I also solemnly declare that it shall not, in future, be submitted by

me for obtaining any other degree from this or any other university or institution. I also

understand that if evidence of plagiarism is found in my thesis/dissertation at any stage,

even after the award of a degree, the work may be cancelled and the degree revoked.

Signature of Candidate

 Osama Tariq

 Name of Candidate

May 18th, 2022

 Date

iii

ABSTRACT

Traditional software development approaches advocate heavy upfront planning,

extensive documentation and reluctance to change adoption. These characteristics

attributed to the failure of many software development projects in the past. Eventually,

agile software development approach evolved that changed many of the aspects of

traditional software development such as flexible planning, light documentation,

change embracing approach. These approaches yielded better results when applied to

the small-scale software projects but challenges were encountered when agile

approaches were applied to large scale software projects. This research study aims to

seek the opinion of the industry practitioners regarding the demotivators faced while

scaling agile methodologies as mentioned in the literature. Questionnaire survey has

been adopted as the research methodology due to its aptness in this research study. 143

survey respondents have contributed their valuable opinions for data collection in this

research study. To map the industry survey findings with the literature survey, a

comparison has been made between the top ranked demotivators from literature and

industry survey. Statistical data analysis reveals a high degree of consistency between

the findings of literature review and the opinion of large-scale agile software

practitioners. Moreover, the best practices to address the demotivators have also been

discussed at length.

iv

TABLE OF CONTENTS

AUTHOR’S DECLARATION ii

ABSTRACT iii

LIST OF TABLES vii

LIST OF FIGURES viii

DEDICATION ix

CHAPTER 1 1

1.1 Overview 1

1.3 Related Work 3

1.4 Motivation 5

1.5 Problem Statement 5

1.6 Research Questions 6

1.7 Aim of the Research 6

1.8 Research Objectives 6

1.9 Scope of Research Work 7

1.10 Thesis Organization 7

CHAPTER 2 8

2.1 Overview 8

2.2 History of Software Development 8

2.3 Proposition of Waterfall Model 9

2.4 Transition to Prototyping Methodology 11

2.5 Introduction of Agile Methods 12

2.5.1 Agile Manifesto 12

2.5.2 Outcome of Application of Agile Methodologies 14

2.6 Conception of Agile Scaling Frameworks 14

2.7 Outcome of Application of Scaling Agile Frameworks 15

v

2.8 Exploration of Challenges for Scaling Up Agile Methodologies 17

2.9 Description of Demotivators Extracted from Literature 22

2.10 Practices to Address Demotivators from Literature 26

2.11 Summary 27

CHAPTER 3 28

3.1 Overview 28

3.2 Research Strategy 28

3.3 Survey Medium 30

3.4 Survey Instrument 31

3.5 Questionnaire Design Process 32

3.6 Sampling Techniques 35

3.7 Sample Size 36

3.8 Data Collection Method 37

3.9 Respondents’ Profile for Survey 37

3.10 Data Analysis 39

3.11 Summary 40

CHAPTER 4 41

4.1 Overview 41

4.2 Data Analysis Tools 41

4.3 Preliminary Data Processing 42

4.4 Ranking of Demotivators 43

4.5 Selection of Top 10 Demotivators 45

4.6 Priorities of Demotivators from Industry Survey 46

4.7 Measurement of Internal Consistency of Questionnaire Instrument 48

4.8 Correlation Analysis 49

4.9 Best Practices to Address Demotivators 51

4.10 Discussion 52

vi

4.11 Summary 55

CHAPTER 5 56

5.1 Overview 56

5.2 Conclusions 56

5.2 Limitations 57

5.3 Future Work 57

5.4 Summary 58

REFERENCES 59

APPENDIX A 71

vii

LIST OF TABLES

TABLE NO.

TITLE PAGE

2.1 Demotivators Presented by Faisal & Sohail 21

2.2 Demotivators Presented by Dikert 21

2.3 Demotivators Presented by Kalenda & Hyna 23

2.4 Demotivators Presented by Moe & Mikalsen 23

2.5 Filtered List of Demotivators 24

2.6 Recommended Practices to Address Demotivators by Xin

Nan

25

2.7 Recommended Practices to Address Demotivators by

Anderson

26

4.1 Labels of Frequency and Impact of Demotivators 41

4.2 Illustration of Calculation of Priority of Demotivators 42

4.3 Priorities of Demotivators from Industry Survey 43

4.4 Top 10 Demotivators Selected from Literature 45

4.5 Top 10 Demotivators Selected from Industry Survey Based

on Priorities

45

4.6 Results of Cronbach’s Alpha Reliability Test 47

4.7 Results of Pearson’s Correlation Test 49

4.8 List of Best Practices to Address Demotivators 50

4.9 Mapping of Literature Survey Results with Industry Survey 53

viii

LIST OF FIGURES

FIGURE NO.

TITLE PAGE

3.1 Research Strategy 28

3.2 Large Scale Agile Work Experience of Survey

Respondents

37

3.3 Designation of Survey Respondents 37

3.4 Organization Size of Survey Respondents 38

ix

DEDICATION

I would like to dedicate this effort to the altruistic support and motivation of my

beloved parents who prayed for me without my knowledge and my best teacher

respected Dr. Muzafar Khan, whose guidance always accompanied me throughout

the journey of my life.

1

CHAPTER 1

INTRODUCTION

1.1 Overview

This chapter basically briefs out the motivation for conducting this research study,

problem statement, research questions, aim of the research, research objectives, scope

of this research work and then the thesis organization defines the structure of the

remaining chapters.

1.2 Context

Software development is a process consisting of several steps undertaken in a specific

sequence to produce a software system [1]. The software development process uses

different phases, all logically linked with each other with the output of one phase being

the input of another [1]. Different software development models were developed in the

past that tended to represent the software development process from different

perspectives, although the purpose of each model was to produce a finished software

product in the end [2]. The proposed models only presented the possible flow of

activities in software development process [3]. The first ever model of software

development practically presented in 1970 by Willian W. Royce was the Waterfall

Model [4]. The waterfall model was defined to be such a model where all the activities

are performed one after the other in a particular sequence [5]. The sequence of the

activities mostly remains fixed and resembles the waterfall where all the activities

cascade from top to bottom in a linear fashion [6]. When applied in the context of

software development, the waterfall method dictated that all the phases in software

2

development would be strictly followed in a linear method with the former stage

precisely preceding the next [7].

The waterfall was the earliest proposed software engineering design model that gained

wide acceptance in the software development community [5]. The software engineers

started building software systems based on the waterfall model and that era witnessed

great success of waterfall model [8]. Based on the statistics of researchers of Standish

Group, the adoption of waterfall models experienced 44% successful small scale

software projects with just 11% failure rate which unambiguously indicated its high

suitability in small scale software development projects [9]. Waterfall model, also

called as plan-driven model or represented by the umbrella term “traditional software

development methodology” [6], was actually based on a prefixed series of phases most

commonly referred in literature as requirements elicitation, software design,

implementation, testing and maintenance [10]. The concept behind the waterfall model

was strict adherence to the defined phases and the next stage could only be initiated

once the previous stages were complete in all aspects [11]. The entire roadmap was to

be planned in advance, the milestones, cost of production, time and effort involved

along with heavy documentations and artefacts associated with every important aspect

of software development [12]. Once the previous phases were crossed, there was no

concept of backtracking and reworking after the identification of improvements and

corrections in the later stages, everything had to planned again and started from scratch

[13]. But due to the dynamic and flexible nature of software projects where the

gathered requirements were by no means complete and the changing market trends and

customer requirements proved the collected requirements to be incomplete in many

aspects, the traditional software development approaches increased the quantity of

rework required which in turn pushed up the cost of production and time involved,

causing most of the software projects to lose their initial calculations [10].

The hard and fast upfront planning and calculation was not exhaustive, the progressive

software development brought many of the changes in the initial blueprint that in turn

necessitated the process of backtracking and introduced rework in the completed tasks

ranging from requirements set to software design to coding and testing [12]. The initial

planning worked somewhat unchanged for small scale software projects and the

3

traditional software development methodologies became famous for being associated

with small to somewhat medium scale projects [14] because of smaller requirements

set in such projects, less involvement of stakeholders and less time and associated cost.

The large-scale software projects being dynamic and multi-featured required the input

of lot of stakeholders and hence a large requirement set which was very difficult to

predict in advance [15]. The changing needs of business environment made it

impossible for developers to forestall all the unforeseen events of software

development in the form of rigid project plan artefacts [15]. But the traditional

approaches when applied to large scale software projects caused multi-dimensional

problems in terms of cost overrun, time overrun, excessive rework, frequent slippages

and decreasing trust of the stakeholders [16]. Resultantly, the traditional approaches

slowly got sidelined and the developers started searching out ways to deal with the

inherent problems of traditional software development methodologies [12].

1.3 Related Work

The traditional software approaches remained in practice for small and medium scale

software projects due to their suitability, but the significant failure of large-scale

projects made the applicability of traditional software approaches less useful [12].

According to the report from Standish Group International [9], 42% of the large-scale

software projects employing traditional methodology failed and 55% of such projects

got challenged which indicates a lack of suitability / adaptiveness of traditional

approaches in large scale software projects. The decreasing success rate of traditional

methodologies in large-scale software development opened the ways for another

software development methodology referred to in literature as incremental or iterative

software development methodology [17]. Iterative methodology, as the name suggests,

develops the software in different iterations [18]. Initially the set of requirements is

collected from all the stakeholders and the gathered requirements are then prioritized

based on the input from different stakeholders [19]. The related requirements are then

taken from the prioritized list, implemented and released in the form of small

increments with each successive increments building up the software system towards

completion [18]. Here, the estimation is done for each iteration instead of complete

software development process which in turn consumes less resources and proves more

4

flexible than heavy upfront planning which undergoes significant changes over the

course of software development process [20].

The start of 21st century witnessed many significant changes in the world of software

engineering. The researchers came up with an entirely different lightweight software

development technique called as agile methodology [21]. The agile methodology, in

contrast to the traditional plan driven approaches, was based on agile manifesto in

which individuals and interactions are valued over processed and tools, working

software is valued over comprehensive documentation, customer collaboration over

contract negotiation and responding to changes over following a plan [22]. The agile

methodologies focused on the minimal documentation and essential planning that was

subject to alteration upon recognition of changes due to changing business needs,

stakeholders’ requirements, government regulations etc. [13].

However, the introduction of change management attributes in agile methodologies

made it quite suitable and favorable for those software projects that typically face the

problem of requirement uncertainty resulting in significant shuffling of requirements

set even in later stages of software development [23]. The flexibility of agile methods

favored their applicability on small to medium scale software projects because of less

requirement modifications, few stakeholders and relatively short development cycle

[6]. According to a study conducted by Dan Schilling [24], there have been 72% of the

software projects that adopted agile methodologies and successfully completed within

time and budget constraints up to the stakeholders’ expectations. In contrast to small

to medium scale software projects, large scale projects have numerous complexities in

terms of budget, time constraints, number of stakeholders involved, evolving business

needs, ever changing large requirements set with associated changes in software

architecture, design, coding and integration among others [25]. Due to the varied

nature of large-scale projects, the application of agile methodologies proved to be less

favorable and encountered several problems over the course of their application [26].

Several articles in the literature have referred to the problems associated with

implementation of agile methodologies at large scale as challenges / challenging

factors [27], demotivators etc. [28]. A few studies found in the literature have tried to

5

explore the challenges and demotivators faced up while scaling agile methodologies.

Authors in [29] have explored and presented the literature findings of challenges and

success factors for scaling up agile methodologies. In another article [30], researchers

have worked on the challenges that organizations faced and success factors that helped

organizations while adopting and scaling agile methodologies. Yet in another article,

the authors have detailed out the demotivators for adoption of agile methodologies at

large scale agile projects purely from literature’s perspective [28].

1.4 Motivation

While scaling up agile methods to tailor them for large scale software projects, the

demotivators are faced which hinder their successful implementation and in turn make

the software project less successful in different qualitative and quantitative aspects

[31]. The demotivators faced while scaling up agile methodologies have been

mentioned from literature’s perspective only [28] [29] [32]. Alongside the

demotivators, few studies have highlighted the suggested practices that can help

addressing and mitigating the effects of those demotivators [30]. Hence, there was a

need to seek the opinion of industry practitioners regarding demotivators faced while

scaling up agile methodologies along with the appropriateness and practical

effectiveness of the suggested practices to address the specified demotivators as

mentioned in the literature [28] [29]. This research study aims to identify such

demotivators from literature and conduct an industry survey to seek the opinion of

industry practitioners regarding the demotivators faced while scaling up agile

methodologies. This became the basis and motivation for pursuing this research study.

1.5 Problem Statement

The demotivators faced while scaling up agile methodologies at large scale software

development projects have been pointed out in the literature [28] [29] [30]. However,

there is a need to investigate the viewpoint of industry practitioners about such

demotivators like communication challenges in multi-team environments, lack of

proper planning for large scale agile projects, scarcity of large-scale agile experts,

complexity of large-scale projects, difficult implementation of agile at large scale etc.

6

are some of the commonly mentioned demotivators while dealing with large scale agile

development projects [28] [29]. Furthermore, the opinion of industry practitioners

needs to be sought regarding the suggested practices mentioned by authors in the

literature to address the demotivators encountered while scaling up agile

methodologies [28].

1.6 Research Questions

This research aims to provide the answers to the following research questions by

following a systematic research strategy.

i. What are the demotivators faced by the industry practitioners during the large-

scale agile development projects?

ii. What are the best practices to address the identified demotivators for large scale

agile development projects?

1.7 Aim of the Research

This study aims to seek the opinion of the industry practitioners working on large scale

agile development projects regarding the demotivators faced while adopting agile

methodologies for large scale software development projects. It also aims to establish

the concurrence / relevance between the findings of the literature and the opinion of

the industry practitioners regarding the demotivators faced while scaling up agile

methodologies. Moreover, it this study presents the set of best practices to address each

demotivator in an effective manner based on the opinion of software practitioners and

the findings of literature survey.

1.8 Research Objectives

The following objectives are intended to be achieved by conducting this research

study.

7

i. To list out the demotivators for scaling agile methodologies for large scale

software development projects as found in the literature and verified by the industry

practitioners.

ii. To present the set of best practices in the opinion of industry practitioners to

address the identified demotivators.

1.9 Scope of Research Work

This research work will be explicitly dealing with the demotivators faced while scaling

up agile methodologies on large scale software projects by presenting the opinion of

industry practitioners regarding the demotivators identified from literature survey. The

priorities of the identified demotivators, based on their relative criticalities, will be

presented and the set of best practices to deal with each of the demotivator will be

listed out to help address them in the most efficient manner.

1.10 Thesis Organization

The rest of thesis is organized as follows; Chapter 2 provides a brief background on

literature review, Chapter 3 presents research methodology adopted in this research

study, Chapter 4 presents survey data collection, Chapter 5 discusses the data analysis

and reporting of results, Chapter 6 provides the overall conclusion and future research

directions.

8

CHAPTER 2

LITERATURE REVIEW

2.1 Overview

Literature review is the first and foremost step undertaken while conducting research

in any discipline wherein all the existing publications including journal articles and

conference proceedings from renowned digital libraries on a particular topic are

explored to gauge the extent of research conducted till now in a particular field [33].

Thereafter, the research gaps are identified based on the contemporary issues being

discussed actively among the researchers to direct the future research based on the

identified gaps [34]. In this chapter, a brief description of the published articles

collected and studied as part of literature survey of this research study along with the

identified research gaps has been comprehensively presented.

2.2 History of Software Development

The history of software engineering dates back to as early as 1969 when the term

software engineering was coined in NATO conference [35]. A number of software

developers gathered to discuss the surging software development crisis associated with

large number of failed and challenged projects, lack of standardized practices and

guidelines for software development process and frequent collapse of the existing

software systems during operational use [36]. The conference aimed to address the

aforesaid problems by recognizing the software development field as a separate

discipline and coining the term “software engineering”, designing the set of principles

for the software development discipline with the purpose to develop standardized

practices to achieve uniformity in the work practices of developers around the globe,

9

which will, in turn, lead to the production of higher quality durable software products,

both in terms of time and cost, up to the satisfaction of the existing and prospective

stakeholders [36]. The proceedings of the conference gave rise to the pursuit of

development and standardization of the software development practices in the

developers community [37], which, in turn, led to the proposition of the first ever

development model in the software engineering history commonly known as

“Waterfall Model” [3]. The software development model aimed to simplify as well as

standardize the different work practices followed by the developers in software

development process, resulting in the evolution of structured software development

life cycle, commonly referred to as SDLC in literature [38].

2.3 Proposition of Waterfall Model

The first software development model, namely, the waterfall model was proposed by

Winston W. Royce in 1970 [39] which aimed to address the emerging software crisis

by providing an initial blueprint to the software engineers to streamline the software

development process, albeit in a very rudimentary manner [2]. The waterfall model

typically imitated the water stream falling off the rock, strictly in the downward

manner with no chance of reverse motion [7]. The different steps of software

development process, also referred to as phases of waterfall model, started from

requirements gathering and definition, proceeding to second phase of system design,

which, in turn led to the third phase of implementation, followed by the software

testing phase which almost ended the software development lifecycle with the last step,

operational maintenance associated with the software system for the lifetime [40]. The

development of waterfall model practically aided the software engineers by providing

pragmatic guidelines for building software systems with comparative ease [6].

According to a survey conducted by Johnson [9], approximately 69% of the projects

employing waterfall model were declared successful in meeting their originally stated

objectives. The percentage of challenged and unsuccessful software projects

developed using waterfall methodology remained close to 41% and 29% respectively,

speaking of the high success rate of waterfall methodologies [5]. When the success

rate of waterfall methodologies is discussed with reference to the size of the software

projects, 67% small scale projects, 38% medium scale projects and 21% large scale

10

projects could make their way to success [8]. The waterfall model perceived the

software development process as a rigid and fixed sequence of activities that was to be

undertaken in a strict linear fashion [40]. The successive phase could only be initiated

once the preceding phase was complete in all respects [41], and once the next phase

was entered into, there was no concept of backtracking and reverting to the previous

phases to fix something discovered at a later stage of SDLC [10]. Software systems,

unlike other physical systems in the real world, are quite different in nature and other

attributes, the most important of which is their intangible nature, which makes them

highly flexible [1]. The development of software systems is based on several different

parameters viz inputs from different stakeholders, the needs of ever changing and

evolving business environment, government laws and regulations, adoption to the

changing market trends to name a few [7].

Quite frequently, the software development process entailed the procedure of

backtracking to the previously completed phases of SDLC due to a multitude of

reasons viz identification of vital functional / non-functional requirements at later stage

of SDLC for inclusion in the system, incorrect inclusion of unnecessary requirements

leading up to their inclusion in design and implementation phases, logical errors in

software coding detected during the testing phase causing rework in coding stage etc.

[42]. The waterfall methodologies adopted the notion of planning everything well in

advance to continue with the same roadmap for the entire SDLC, which is never

possible even in small scale software projects due to myriad of unforeseen factors

outside the natural control of software engineers and project managers [43]. The

dynamic nature of software systems, when coupled up with the rigid and sequential

practices of waterfall methodologies, caused frequent problems for developers to start

the whole project from scratch even in the finishing stages which caused cost and time

overrun unnecessarily [44]. The rework, being directly proportional to the size and

hence, the complexity of the software projects, was somewhat affordable in small to

medium scale projects but became unbearable for large scale software projects [45],

evident from the diminishing success rate of waterfall methodology by moving from

small to large scale projects, ultimately leading the researchers to come up with an

alternate, yet workable strategy to counter the inherent and stringent flaws of waterfall

methodology [45].

11

2.4 Transition to Prototyping Methodology

The shortcomings of waterfall model paved the way for another software development

model namely prototyping model [46]. This methodology is one step ahead of the rigid

waterfall model and suggests a rather flexible approach to software development [47].

Prototyping model typically works on gathering a set of functional requirements from

stakeholders and building up a minimal working model viz prototype based on the

essential requirements for the feedback of the stakeholders [46]. The feedback of the

stakeholders is incorporated in the next version of prototype which is placed before

the stakeholders for enhancements [48]. Each feedback cycle refines the prototype till

the time it matches the stakeholders needs and demands in totality [48].

The main idea behind prototyping model is to initially gather all the requirements from

the stakeholders in the start, identify the critical functional requirements and build up

a crude working system by implementing those necessary requirements [46]. Once the

prototype has been designed, the same is passed repeatedly through feedback loops

after consultation with the stakeholders to refine the system design until all the

requirements have been implemented satisfactorily [49]. The prototyping

methodology, in contrast to waterfall methodology, is flexible in nature that relies on

development of software systems by incorporating changes in the software

development process [47]. The studies reported in [14] suggest a success rate of 71%

for software projects employing prototyping methodology. The prototyping method

brought an improvement in software engineering domain compared with the traditional

software methodology viz the waterfall model, but the large-scale software systems

could not be successfully developed using prototyping model based on the large

requirement set of such systems, ever evolving requirements, large time-spans of large

scale projects, involvement of numerous stakeholders including government entities

challenged the application of prototyping models for large scale projects [50].

Eventually, prototyping methodology phased out in favor of a better software

development methodology.

12

2.5 Introduction of Agile Methods

The increased requirements and business environment change was necessitating the

proposition of a unique software development methodology to address the problems

of requirements and business environment change during software development

lifecycle, hitherto left unaddressed by the plan driven / traditional software

development approaches [45]. It was not until 2001 when researchers gathered to

consider an altogether different approach to software development to counter the

challenges posed by the traditional development methodologies [10]. The researchers

came up with a mindset [22], governed by four key principles that redefined the future

of software engineering. The key principles aka “Agile Manifesto” were carefully

designed keeping in view the inherent flaws in the previous software development

paradigms, that caused numerous software projects to fail, causing huge losses [22].

2.5.1 Agile Manifesto

The usage of software development processes and tools was strictly defined in plan

driven approaches whereas agile took a different stance by stating that individuals and

interactions should be preferred over processes and tools because software is

developed by individuals, not by processes and tools [51]. The processes aid the

developers in developing the software, whereas the verification and validation of the

developed content comes from the customers which clearly states the importance of

individuals over the processes and tools [21]. Agile manifesto gave preference to

working software over comprehensive documentation to increase the importance of

the purpose of software development [22]. Earlier approaches focused heavily on the

production of formal documents aka artefacts, associated with each and every phase

of software development life cycle to document all the changes and the associated

working [52]. These heavily documented artefacts were of little importance during and

after the software development process as the development team documented all the

minor and major events associated with each phase and these artefacts were usually

not shared with the customer [10]. As agile methodologies claimed to be customer

13

centric, they dictated the usage of minimal documentation necessary to document the

system design and most important changes associated as the artefacts in a changing

business environment become outdated very quickly [45]. As the customer is

interested in the rightful use of the software product, it should be given preference

upon production and maintenance of heavy software artefacts [52]. Agile approaches

favored extensive customer involvement and collaboration throughout the software

development process by considering customer as a necessary stakeholder and member

of the development team [22]. The plan driven approaches mostly worked without the

customer involvement except in the initial requirements development phase,

proceeding through the successive stages without customer involvement which

resulted in incorrect system architectural and interface design, necessitating major

rework in the later stages of SDLC, running out the project of its initial budget and

time estimates [53].

Agile advocates the concept of customer collaboration over the process of contract

negotiation [53] which means that terms and conditions of the contract between the

customer and developers are quite formal which are, most of the time, not followed

[54]. The customer involvement makes the development process very flexible by

seeking the feedback of customer in each phase which in turn leads to the design and

production of a high-quality software product, fulfilling the purpose of its development

[21]. For continuous improvement and upkeep of the reputation of the developers in

particular and software engineering discipline in general, some of the terms of the

contract may be dispensed with to yield a working software developed within specified

constraints, fulfilling the stakeholders’ requirements [22]. Another inherent flaw in the

plan driven / traditional software development approaches was the strict adherence to

the project management plan once designed in the start [55]. Any restructuring or

redefinition of the plan during any stage of the development process was not

considered and the managers and developers preferred to ignore any change in the

existing course of action once selected [6]. This approach didn’t work due to the

dynamic nature of software where everything seems to change mainly requirements

causing changes in software design which in turn introduced changes in software

coding, subsequently necessitating rework in the testing phase [56]. Agile approaches

proposed a flexible change embracing strategy to incorporate the suggested changes

during any phase of the software development process by making amendments in the

14

software development process and the project management plans accordingly [57].

Because the software development is a dynamic and retractable flow of activities, the

project plans should be built keeping in consideration the possible imminent changes

in future. In other words, change embracing strategy should be preferred over

following a fixed rigid plan [16].

2.5.2 Outcome of Application of Agile Methodologies

The agile methodology based on the agile manifesto when put into practice, yielded

more efficient results than the traditional / plan driven software development

approaches [8]. Jorgensen & Magne, in their research study [58], stated that agile

methodologies witnessed a remarkable software project success rate when applied to

small to medium scale projects as compared to large scale software development

projects. Because the agile methodologies were originally perceived to be developed

for small to medium scale software projects, hence the application yielded much higher

results [58].

The decreasing success rate of agile methodologies in the context of large-scale

software projects led researchers to explore ways and means to make the agile

methodologies applicable for large scale projects to increase their usefulness [59]. The

multi-team, multi-site and multi-customer nature of the large-scale projects posed a

natural challenge to the applicability and success of the agile methodologies [60].

2.6 Conception of Agile Scaling Frameworks

Based on the inherent flaws of agile methodologies when viewed in the context of

large-scale software systems, researchers came up with the logical collection of

principles that aim to provide a pathway for easy implementation of agile

methodologies at large scale software systems commonly referred to as Agile Scaling

Frameworks in the literature [61]. These frameworks tend to provide a body of

knowledge consisting of the practices and procedures that can be adopted to scale agile

successfully, gaining the promised success of agile methodologies in large scale

software projects [59]. The first such framework to be introduced in the software

15

engineering discipline by Dean Leffingwell is Scaled Agile Framework (SAFe) [60]

which incorporates a wide range of software development practices from different

variants of agile methodologies namely Scrum, Extreme Programming (XP), Dynamic

Systems Development Method (DSDM), Crystal Clear Development (CCD) etc. [60].

SAFe is commonly the most popular scaling framework in large enterprises, according

to a report published by VersionOne in 12th state of agile survey [62], although Large

Scale Scrum (LeSS), Spotify, Nexus frameworks are also preferred by industry

practitioners while implementing agile at large scale. Gruver & Mouser, in their study

[63], have highlighted that the novice introduction of scaling agile frameworks in the

market has not yet passed a considerable time and there is a need to investigate the

adoptability of these frameworks in the software industry as well as the manner in

which the organizations are adopting these scaling frameworks.

2.7 Outcome of Application of Scaling Agile Frameworks

Owing to the increasing popularity of the agile scaling frameworks, the researchers viz

Paasivaara & Lassenius, in their research article [64], have tried exploring the benefits

and challenges faced while adopting Scaled Agile Framework (SAFe) in large-scale

software enterprises. The authors adopted the multi-vocal literature review

methodology to explore the published material viz conference proceedings and journal

articles as well as the grey literature / non-published material viz blogs, websites etc.

The authors gathered 7 case studies from peer-reviewed sources and 47 case studies

from non-peer reviewed sources regarding the implementation of SAFe framework in

large-scale software enterprises. The organizations from different domains like

financial, software, manufacturing as well as telecommunication have been reported

to adopt the SAFe framework.

The adoption of SAFe framework reports the benefits of enhanced transparency in

business practices and communications, alignment in the expectation of software

development teams and stakeholders, alignment of organizational goals and policies

with the work practices of SAFe framework, improved product and process quality,

reduced time to market based on the adoption of SAFe framework, greater

predictability in the deliverance of the quality software product, reduction in the cost

16

of production and quality of software products, enhanced responsiveness towards the

changing market trends and the stakeholders requirements etc. Among the reported

challenges faced by the large-scale enterprises while adopting SAFe framework

include the resistance to acceptance of change in the organizational prevailing

practices, strong change resistance from development teams and project managers

having no or little knowledge of SAFe framework, difficult implementation and

scaling of agile methodologies for large-scale projects, using hybrid approach to

software development i.e., blending plan driven approaches with agile approaches,

lack of autonomy and decision making power, lack of experience staff members with

varied expertise, challenges in project management viz planning releases and change

management, challenges in backlog prioritization and maintenance, loss of agility

using SAFe framework i.e., moving away from agile methods, unsuitability of SAFe

framework in certain environments, challenges of achieving integration and

coordination in multi-team environment of Global Software Development (GSD)

projects etc. are the most commonly reported challenges. The authors, in their findings,

reported that apart from the inherent challenges of scaling agile methodologies, SAFe

framework introduces its own challenges that need to be explored. The practical

usefulness of SAFe framework is limited because of the limited research conducted in

this domain. Further, research can be conducted to explore the solutions to the reported

challenges to help organizations address them appropriately.

Another study conducted by Conboy & Carroll [65] conducted a literature review to

identify the challenges for using agile scaling frameworks and associated

recommendations for each challenge to mitigate it, as reported in the literature. The

authors have explored 13 research publications and extracted the 9 most commonly

reported challenges. The challenges include the resistance to change readiness and

adoption, balancing organizational structure with the implementation of scaling

frameworks at large-scale enterprise level, loss of essence of agile methodology by

over adherence to the scaling frameworks, uncertainty about the outcome of

implementation of agile scaling frameworks, lack of specific metrics and criteria for

the selection of agile scaling frameworks, lack of flexibility in the procedures of agile

scaling frameworks, lack of autonomy of development teams, lack of experts for

implementing scaling frameworks, difficult transition from plan-driven software

development approaches to large-scale agile software development approaches. The

17

authors have, however, suggested that more research needs to be conducted in the

domain of scaling agile methodologies for large scale software projects to thoroughly

identify the challenges to help organizations incorporate necessary procedures to

address them using nimble project management approaches.

2.8 Exploration of Challenges for Scaling Up Agile Methodologies

To address the concerns of decreasing success rate of agile methodologies for large-

scale software projects, the authors Hobbs & Petit in their research article [66] have

adopted systematic literature review (SLR) to explore the challenges that are

encountered while scaling up agile methodologies to large multi-team projects. The

authors have tried to categorize the challenges for scaling up agile in two categories

with the first category containing challenges inherent to the agile methods themselves

and the second category containing challenges specific to the large-scale enterprise

environment. The former category includes such challenges as the size of the

development team, distributed existence of the software development teams,

communication and coordination challenges, lack of tacit knowledge sharing between

the distributed teams etc. The latter category groups the challenges like strict

adherence to the formal software development procedures in large scale enterprises,

following rigid project management guidelines, management unwilling to adopt the

modern agile approaches, blending plan driven approaches with agile methodologies,

global presence of large-scale enterprises, non-uniformity in the business practices and

workflows of distributed software development teams to name a few. The authors

narrated that despite the increasing trend of adoption of agile methodologies for large-

scale software projects, there are basic contradictions between the nature of large-scale

software projects and the agile methodologies due to which agile methods require

significant transformation at project as well as organizational level to make them

scalable. Here, the authors have explored the literature aspect of the challenges faced

while scaling up agile methodologies, however, the industry opinion about the

literature findings is still missing at large.

Moe & Mikalsen, in their research article, explored the case study of implementation

of agile methodologies at a large-scale organization viz a maritime services provider

18

company [67]. The main aim of conducting the case study was to closely monitor the

process of scaling agile at large-scale with the focus to identify the challenges faced

over the course of transformation. The authors adopted a mixed research methodology

by collecting the data relevant to their research study through interviews, detailed

analysis of business artefacts, observation of the collaboration meetings with

stakeholders and development team. The authors quoted change resistance from

management and development team, inter-team coordination challenges, lack of

effective collaboration among diverse stakeholders, lack of large-scale agile experts

and lack of knowledge while implementing agile methods as the important challenges

while scaling up agile methodologies. Here, the authors have selected a single case

study design which is very specific and the results so obtained cannot be generalized

and relied upon completely. The authors suggested that future research can be based

on exploring further challenges over the course of scaling and addressing them in an

appropriate manner. Further, multiple case studies can be studied about the

transformation of agile methodologies at large-scale to get a mature view of the

challenges faced while scaling agile at large.

A systematic literature review conducted by Muhammad Faisal Abrar et al [28]

pointed out the demotivators that hinder the scaling of agile methodologies at large

scale development projects. The authors adopted systematic literature review (SLR)

approach followed by contrived search criteria through which the research articles

were filtered and extracted 15 demotivators from 58 relevant papers. The authors have

tried to compare the identified demotivators from different perspectives like the

existence of demotivators in different continents, citing of such challenges in different

digital libraries and occurrence of the demotivators in different decades. The authors

have provided a brief overview of the demotivators that are quite frequently faced

while scaling up agile methodologies, however, the authors have only relied upon the

findings from literature’s perspective only. The practical opinion of industry

practitioners needs to be taken into consideration to equate the results of the literature

survey with that of the practitioners’ view.

Kim et al. [27] extended the work of [28] by exploring the challenges as well as the

success factors for the transformation of agile methodologies at large scale by

19

following a systematic literature review approach. By conducting a comprehensive

systematic literature review (SLR), the authors have identified 30 challenges and 25

success factors for scaling up agile methodologies for large-scale software projects.

The challenges and success factors have been grouped into 9 and 7 categories

respectively based on their similarity. The authors have not considered the industry

practitioners’ view regarding the challenges and success factors faced during the

process of agile methodologies transformation. In this study, the reported challenges

and success factors presented from literature have been classified into relevant

categories to enable the project managers and developers to focus on specific

categories of demotivators and success factors as a consolidated group instead of

considering them individually, which may not prove to be an effective approach.

The authors in [68] adopted the similar strategy as that of [28] but instead focused on

the motivating factors that aid in the adoption of agile practices for large scale software

projects. An extensive systematic literature review has been conducted by the authors

where 21 motivators have been identified from a total of 58 research papers. The

authors have adopted a criterion of frequency of occurrence in literature to rank the

motivating factors based on their criticality and importance. The more a demotivator

is cited by the authors in literature, the more is its relative criticality. When the

motivators are weighted against the defined criterion, some of the motivators have

been marked as critical based on their frequency of occurrence / citation in the

literature. Moreover, the motivating factors have been compared based on their

existence in different regions / continents and frequency of citation in digital libraries.

However, an equally important antithesis of motivating factors viz the demotivating

factors that hinder the successful implementation of agile methodologies on large scale

software projects have been largely skipped by the authors in the research study.

However, the motivators for large scale agile development have been presented from

authentic and renowned journals.

Shahbaz et al. [68] conducted a questionnaire survey from the agile practitioners of

Pakistani software industry to explore the impact of challenges and success factors on

the agile software development. The survey has been conducted in 23 software

companies in Pakistan involving 90 industry practitioners, out of which the opinion of

20

67 practitioners has been finally selected. The opinion of industry practitioners has

been sought through a questionnaire survey by presenting 36 motivating factors and

24 demotivating factors that motivated & demotivated them to adopt agile

methodology instead of traditional software development approaches. Industry survey,

employed as the research methodology in this study, is the de facto standard to

authenticate the literature findings. Here, the prime focus of the research study is to

elicit the motivating and demotivating factors for adoption of agile methodologies in

place of traditional software development approaches in the software companies of

Pakistan. But the demotivators faced while scaling up agile methodologies for large

scale software development projects have not been explored.

Another study conducted by Martin & Kalenda et al [30] went one step ahead of Kim

et al. [29] and adopted systematic literature review approach to explore the agile

scaling practices, challenges and success factors for large scale software development

and applied the theoretical literature findings to one software development company

as a case study. The authors have listed the main scaling practices adopted in the

transformation of agile methodologies, the core challenges faced and the main

motivation factors during the entire case study. The conducted study is very specific

and hence, cannot be generalized but the case study approach practically validates the

theoretical findings.

The authors in [69] enhanced the contribution of Kim et al. [27] by exploring success

factors and risk factors in adopting agile methods for large scale software development

projects by conducting a systematic literature review. The authors aimed to utilize the

theoretical output of literature review process i.e., the extracted success factors and

risk factors from literature as input to propose “Large Scale Agile Adoption Model”

(LSAAM) that will aid the management in successfully implementing the agile

methodologies in large scale software development projects by minimizing the

transformation risks. The proposed model has not been practically implemented by the

authors in any industry project and hence, the practical validity of the model is not

proven. However, large scale agile adoption model has been based on extensive

literature survey findings and hence, can prove to be quite useful if implemented with

standard practices in a controller manner.

21

22

2.9 Description of Demotivators Extracted from Literature

After a careful survey of the relevant existing research material published in renowned

digital libraries, the conducted systematic literature survey has extracted the list of

demotivators from different articles in the literature. A list of 64 demotivators has been

complied after extraction of demotivators from the journal articles. The demotivators

extracted from each article are presented in tabular format for easy comprehension.

Table 2.1: Demotivators presented by Faisal & Sohail [28]

Sr. # Identifier Demotivator

1 D1 Traditional Organizational Culture

2 D2 Lack of Management and Commitment Support

3 D3 Lack of agile experts

4 D4 Reluctance to adopt

5 D5 Bad customer relationship

6 D6 Problem in requirement elicitation

7 D7 Lack of customer knowledge

8 D8 Problem of team feedback

9 D9 Reduced productivity due to delay

10 D10 Lack of customer presence

11 D11 Exhaustive pair programming

12 D12 Lack of team training

13 D13 Lack of effective communication

14 D14 Lack of team orientation

15 D15 Continuous testing and integrations

Table 2.2: Demotivators presented by Dikert [28]

Sr. # Identifier Demotivator

1 D1 General resistance to change

2 D2 Skepticism towards the new way of working

23

3 D3 Top-down mandate creates resistance

4 D4 Management unwilling to change

5 D5 Lack of coaching

6 D6 Lack of training

7 D7 Too high workload

8 D8 Old commitments kept

9 D9 Challenges in rearranging physical spaces

10 D10 Misunderstanding agile concepts

11 D11 Lack of guidance from literature

12 D12 Agile customized poorly

13 D13 Reverting to the old way of working

14 D14 Excessive enthusiasm

15 D15 Interfacing between teams difficult

16 D16 Autonomous team model challenging

17 D17 Global distribution challenges

18 D18 Achieving technical consistency

19 D19 Interpretation of agile differs between users

20 D20 Using old and new approaches side by side

21 D21 Middle managers role in agile unclear

22 D22 Management in waterfall model

23 D23 Keeping the old bureaucracy

24 D24 Internal silos kept

25 D25 High-level requirement management large missing in agile

26 D26 Requirement refinement challenging

27 D27 Creating and estimating user stories hard

28 D28 Gap between long- and short-term planning

29 D29 Accommodating non-functional testing

30 D30 Lack of automated testing

31 D31 Requirement’s ambiguity affects quality assurance

32 D32 Other functions unwilling to change

33 D33 Challenges in adjusting to incremental delivery pace

24

34 D34 Challenges in adjusting product launch activities

35 D35 Rewarding model not teamwork centric

Table 2.3: Demotivators presented by Kalenda & Hyna [27]

Sr. # Identifier Demotivator

1 D1 Resistance to change

2 D2 Distributed environment

3 D3 Quality assurance issues

4 D4 Integration with non-agile parts of organization

5 D5 Lack of commitment and teamwork

6 D6 Too much pressure and workload

7 D7 Lack of knowledge, coaching and training

8 D8 Requirements management hierarchy

9 D9 Measuring progress

Table 2.4: Demotivators cited by Moe & Mikalsen [67]

Sr. # Identifier Demotivator

1 D1 Chance resistance from management and development team

2 D2 Inter team coordination challenges

3 D3 Lack of effective coordination among diverse stakeholders

4 D4 Lack of large-scale agile experts

5 D5 Lack of knowledge while implementing agile methods

After carefully analyzing the 64 extracted demotivators for duplicates and irrelevant

ones, the list of 24 demotivators has been extracted which is detailed out in Table 2.5.

25

Table 2.5: Filtered List of Demotivators

Sr. # Identifier Demotivator

1 D1 Traditional organizational culture

2 D2 General resistance to change

3 D3 Lack of management and commitment support

4 D4 Lack of agile experts

5 D5 Reluctance to adopt

6 D6 Bad customer relationship

7 D7 Problem in requirement elicitation

8 D8 Lack of knowledge

9 D9 Problem of team feedback / interfacing between teams

difficult / lack of teamwork

10 D10 Reduced productivity due to delay

11 D11 Lack of customer presence

12 D12 Lack of team training

13 D13 Lack of effective communication / distributed environment /

global distribution challenges

14 D14 Lack of team orientation

15 D15 Management unwilling to change

16 D16 Too high workload and pressure

17 D17 Misunderstanding agile concepts

18 D18 Agile customized poorly / misinterpretation of agile concepts

19 D19 Reverting to the old way of working / management in

waterfall model

20 D20 Using old and new approaches side by side

21 D21 Creating and estimating user stories hard

22 D22 Requirement ambiguity affects quality assurance

23 D23 Lack of proper planning for large scale agile projects

24 D24 Complexity of large-scale projects

26

2.10 Practices to Address Demotivators from Literature

Xin Nan et al [65] conducted a Systematic Literature Review as part of his research

study to explore the recommendations and guidelines that can help to address the faced

challenges for scaling up agile methodologies. The research findings of Xin Nan are

listed out in Table 2.6.

Table 2.6: Recommended Practices to Address Demotivators by Xin Nan [65]

Sr. # Identifier Recommended Practices

1 P1 Make team coordination top priority

2 P2 Self-autonomous teams

3 P3 Flexible development approach

4 P4 Investment in human resource

5 P5 Consider customer as a necessary stakeholder

6 P6 Complete and correct identification of real stakeholders

7 P7 Induct experienced team members

8 P8 Appointment of project facilitator

9 P9 Leadership change

10 P10 Routine progress feedback to point out slacks

11 P11 Outsource agile projects

12 P12 Maintain consistency in work practices

The findings of the research study regarding recommendations for mitigating the

challenges for scaling up agile as extracted from a comprehensive systematic literature

review conducted by Wright [32] are discussed in Table 2.7.

27

Table 2.7: Recommended Practices to Address Demotivators by Wright [32]

Sr. # Identifier Recommended Practices

1 P1 Manage conflicting requirements

2 P2 Integrate quality assurance activities in each phase

3 P3 Limited customer involvement

4 P4 Lack of face-to-face meetings

5 P5 Knowledge sharing between distributed teams

6 P6 Impart on-job training

7 P7 Formulate realistic timelines

8 P8 Conduction of team training sessions

9 P9 Maintain flexible timelines

10 P10 Develop forward advancing attitude

2.11 Summary

In this chapter, the articles relevant to the research topic have been explored as part of

literature review phase and a brief description of each article comprising of its aim,

research methodology, findings, limitations have been presented. Finally, the list of

extracted and filtered demotivators, recommended practices from literature has been

presented in a tabular and easy to understand format. Literature review sets the path

for the research methodology which is briefly discussed in the next chapter.

28

CHAPTER 3

METHODOLOGY

3.1 Overview

This chapter covers the research methodology adopted in this study. The whole process

entailing the selected research method, justification for selection of the research

method, composition and conduction of questionnaire survey, demographics of the

survey respondents has been discussed at length.

3.2 Research Strategy

Research is the process of exploring solutions to the new emerging problems in a

particular domain [70]. It is not a haphazard process rather a highly organized and

systematic process that follows a specific methodology using which the proposed

problem is addressed in a step-by-step manner [71]. The methodology specifies the

procedure that will be adopted for exploring answers to the research questions set by

the researcher [72]. The research methodology adopted can be an interview,

observation [73], survey [74], simulation [75] etc. based on the type of research study

being conducted.

Research strategy describes the methods used in conducting research. It is an overall

approach adopted by the researcher executed in a step by step manner while

conducting research [70]. It entails different methods and procedures that are utilized

over the course of research. The research methods further fall into two categories viz

quantitative and qualitative research based on the nature of the research study

29

undertaken [76]. The research strategy adopted in this study is better illustrated with

the help of the following diagram.

Figure 3.1: Research Strategy

Research methodology can either be qualitative, quantitative or a combination of both

commonly referred to as mixed method research [77]. Quantitative research, as the

name suggests, involves numeric data or data that can be converted to or represented

Literature Review

Conducted

Findings Extracted

from Literature

Research Questions

Formulated

Questionnaire

Design

Survey Conduction

Data Collection

and Analysis

Research Objectives

Research

Methodology

30

through numerals [71]. The data under quantitative research is mostly gathered through

experimentation and simulation [78] and the collected data undergoes statistical

analysis tests to yield the desired results. Quantitative data collection yields numeric

data that is easy to process using statistical tests [79]. The results of data analysis are

easy to analyze and describe because of numeric nature of data [80]. However, not all

studies employ quantitative data collection. In this study, quantitative research

methodology has been adopted because the data to be collected and analyzed has been

converted into numeric format before statistical analysis phase.

Qualitative research involves collecting and analyzing data that is non-numeric,

descriptive and narrative in nature [81]. Qualitative research employs qualitative data

collection methods which generate non-numeric data [82]. The qualitative data

analysis involves extensive use of artificial intelligence and data mining techniques for

extraction of various patterns from qualitative data because of its descriptive and open-

ended nature [83]. This contrasts with the quantitative research that deals exclusively

with numeric or nearly numeric data [71]. The qualitative data collection also results

in greater influx of junk data because it is mostly collected through open ended

questionnaires, interviews and observations [73].

Mixed research methods or multi-research method, as the name suggests, employs a

combination of research methods and data collection methods [76]. These methods are

mostly used in situations where it is not possible to utilize a single research

methodology alone. Mixed method research may adopt a combination of quantitative

and qualitative data collection methods [84], a mixture of different research

methodologies [77] or even a combination of different data collection and research

methodologies [77].

3.3 Survey Medium

Survey medium refers to the method or source used to collect the data for research

[85]. The medium selected should be feasible, pragmatic and aid in easy collection of

requisite data [86]. Various survey media are used which include telephonic survey

where the data is collected from the respondents through telephonic interviews [87],

31

email surveys where the questionnaires and responses are sent and received via email

[88], face to face surveys where the respondents and researcher are physically present

for participation in the research study [89], online surveys where the questionnaires

are floated to intended recipients through social networking sites for effective

dissemination [90], paper based survey where the survey questions are mailed /

physically distributed to the participants and their responses are collected back in the

similar manner [91]. The survey medium selected in this research study is the online

survey method (URL of Questionnaire: https://forms.gle/DtVLBfX3KxP2hS9A6) due

to its cost effectiveness in questionnaire distribution, time saving in data collection,

effective inclusion of the intended recipients in the research study, and easy outreach

to the global large scale agile software developers community. The responses of the

respondents have been received as downloadable Microsoft Excel workbook with each

row containing the responses of a single respondent.

3.4 Survey Instrument

Survey instrument refers to the technique / medium used for data collection out of

which questionnaire is a very commonly used survey instrument based on the type of

research being conducted [86]. Here, a combination of close ended and open-ended

questionnaire has been chosen for this research study to reap the benefits of both

approaches. Close ended questionnaires allow the respondents to select the most

suitable options using radio buttons, check boxes, drop down menus etc. [92]. The

brevity of the responses is increased in this approach, but the respondents are not able

to communicate their viewpoint in a descriptive manner which suppresses the true

purpose of carrying out the research study to a great extent [93]. On the flip side, open

ended questionnaires give more control to the respondents to allow them to answer the

questions at length which results in a greater influx of useful data along with junk data

which needs to be filtered out before applying statistical tests [94]. The questionnaire

has been designed in Google Forms due to its user-friendly interface which greatly

aids in building up questionnaire within relatively less time.

The questionnaire has been designed in accordance with the data collection instrument

guidelines presented by the authors Kitchenham & Pfleeger [95]. According to the

https://forms.gle/DtVLBfX3KxP2hS9A6

32

authors in [95], survey research is initiated with the definition of the objectives of the

said survey wherein the purpose of conducting the survey is stated along with its

outcomes. Once the objectives are stated, then the relevant literature is explored to find

out the extent of existing work explored by researchers in a particular domain as well

as to find out if a similar sort of survey has already been conducted by the researchers.

Based on the data explored from literature, either a survey instrument can be

constructed from scratch or re-used. For the instruments to be designed from scratch,

question types are decided (open, closed or a combination of both), questions are

designed carefully using unambiguous language, are mutually exclusive and the

answers to those questions can be numerical, yes/no answers, or based on ordinal

scales.

The length of the questionnaire has been kept reasonable and the relevant questions

have been grouped together in subsections. Survey instrument design can attract

researcher bias based on the way the questionnaire is designed to support a particular

hypothesis or premise. The instrument reliability evaluation and validation is

undertaken to ascertain whether the instrument produces similar results when

distributed to different respondents as well as if the instrument actually measures what

it intends to measure [95]. To eliminate bias, focus groups and / or pilot studies are

commonly employed to evaluate and assess the validity of the designed instrument

before actually administering it which helps to improve the instrument in several ways

based on the feedback from the participants of the review process. Once the survey

instrument has passed content and construct validity, it is ready to be administered to

the target sample for data collection.

3.5 Questionnaire Design Process

Based on the supposed guidelines of Kitchenham & Pfleeger [95], the objective of

conducting the questionnaire is stated in the introduction of questionnaire to seek the

opinion of the industry practitioners regarding the demotivators faced while scaling up

agile methodologies, along with the best practices to address those demotivators. Once

the literature review has been conducted to extract the necessary material to aid in the

conduction of survey, the questionnaire has to be designed by either reusing an existing

33

questionnaire from literature or developing the questionnaire from scratch if such

instrument is not available in the literature. For instruments to be reused, the existing

questionnaire is assessed for the construct and content modification to allow it to adapt

to the research under study. For this research study, no such existing questionnaire has

been found in the literature, leaving the only option to design the questionnaire up from

scratch. To initiate the questionnaire design process from scratch, the list of

demotivators and the list of suggested practices to address them have been extracted

from different journal articles to constitute the substance of the questionnaire

(complete list of demotivators and suggested practices presented in Chapter 2). The

demotivating factors have been filtered out to remove the duplicates and the

ambiguous ones so as to make the questions mutually exclusive and non-overlapping.

The questions have been designed in natural and simple language without the use of

technical jargon. The questionnaire has been designed as a combination of both open

and close ended questions to enable the respondent to express his / her opinion in an

unequivocal manner.

The first section contains the demographic information of respondents. The

demographic section contains only those questions that are quite relevant to the basic

information of respondents like name, designation of the respondent while working in

software industry, organization name they work / previously worked for, software

development experience and particularly large-scale software development experience

in years and the size of the organization (small / medium / large / very large scale).

Sensitive & irrelevant questions like age, gender etc., have not been included being

out of context. While there might be a debate among the researchers for the inclusion

/ exclusion of the “Don’t Know” option while designing questionnaire surveys, this

controversial option has not been included in this questionnaire as its presence can lead

the respondents not to express their true responses, which can result in high influx of

spurious responses. The questions in instrument have been appropriately formatted and

the font has been selected carefully to maximize the visual clarity.

The second section of questionnaire contains the proforma for the respondents to select

the appropriate frequency level of demotivators encountered while scaling up agile

methodologies. Likert Scale has been used to rank the frequency levels as Rare,

34

Unlikely, Possible, Likely, Almost Certain [96]. These labels are given numeric values

where 1 = Rare, 2 = Unlikely, 3 = Possible, 4 = Likely, 5 = Almost Certain. Similarly,

the impact of those demotivators has also been represented by Likert Scale having

labels as Incidental = 1, Minor = 2, Moderate = 3, Major = 4, Extreme = 5 [97]. The

Likert scale has been balanced by having the equal and opposite options on the two

ends of the scale and the interval between the options has been kept equal.

The third section of the questionnaire contains the demotivators and a list of suggested

practices corresponding to each demotivator in the form of checkboxes whereby the

respondent can select the best practice(s) s/he thinks is best suited to address the

respective demotivator. Here, the open-ended option is given to the respondents to

allow them to add any other additional guideline(s) / practice(s), not already available

in the list, to address the demotivators in their opinion (for complete list of filtered

demotivators and suggested practices, please consult Chapter 4). Each section contains

the relevant questions logically grouped together and the length of the questionnaire

has specifically been considered to allow the respondents to complete it within

reasonable time length i.e., 10 to 15 minutes at normal pace. The conduct of the

questionnaire also assures the respondents of the complete protection and

confidentiality of their identity and their responses in all the circumstances. The

responses of questionnaire will only be used for the intended purpose and will not be

shared with third parties, either for profit or non-profit. This declaration has shown to

enhance the trust and motivation of the survey respondents, enabling them to answer

the questions with reasonable judgement and objectivity, thus increasing the positive

response rate.

To avoid the willful inclusion of bias in the questionnaire, the questions have been

developed in a neutral manner to prevent the inclination towards any specific point of

view. To address the concerns of researcher bias and to ensure the observance of

content and construct validity, the questionnaire has been passed through a focused

group session to identify the inherent faults and drawbacks likely to affect the

effectiveness of the proposed questionnaire and purpose of its conduction. Few

industry practitioners have contributed their valuable feedback while critically

analyzing the questionnaire in the process of content and construct validity of the

35

questionnaire which have led to significant improvements in the designed instrument,

making it ready for administration. To measure the internal consistency of the data

items of the questionnaire, Cronbach’s Alpha Reliability Test has been executed and

an overall value of 0.928 of Cronbach’s Alpha, based on the recommendations of

George & Mallery [98] suggests that the data items are highly correlated and together

contribute as a single construct for measuring the responses (for detailed discussion

about internal consistency of the questionnaire, please consult Chapter 4).

3.6 Sampling Techniques

The sampling technique refers to the method / approach used for selecting samples

from a population [99]. As it is not possible to consider the whole population in the

research study, the researcher almost always extracts samples from the population

based on different techniques where the sample is said to be the representation of the

complete population [100].

Probability sampling is a type of sampling technique where each member of the

population has an equal chance of selection in a sample [101]. It is used when the

research entails the collection of generic data from general population where inclusion

/ exclusion criterion is not defined [102]. Probability sampling reduces the researcher’s

bias in sample selection and also produces more accurate results. However, it cannot

be used in domain specific situations where the nature of respondents and inclusion /

exclusion criterion needs to be defined [103].

Non-probability sampling techniques reduce the chances of equal selection of various

members of the population [101]. The members to be included in the study are selected

based on various inclusion / exclusion criteria that are applied to the population to filter

out the samples [104]. Non-probability sampling has several types like

 Convenience sampling where the researcher selects samples from the

population based on his convenience, ease and judgement [105]. There is no

defined criterion in the selection of respondents, it is purely based on the

36

researcher’s convenience and ease. This includes researcher bias and the

samples selected in most cases do not accurately represent population [106].

 Quota Sampling in which the population is divided into mutually exclusive,

distinct groups or categories based on some criteria and then samples are

selected from each group based on some inclusion / exclusion criteria [107].

 Judgmental or purposive sampling is a type of non-probability sampling where

the researcher intentionally selects members of a population for participation

in study based on their ability that fulfil certain criteria [108]. The researcher

first filters out the population based on inclusion / exclusion criteria and then

selects samples from the selected population for inclusion in research study

[101].

 Snowball sampling or referral sampling initially employs few members out of

a population fulfilling certain criteria based on their ability to participate

efficiently in the research study [109]. The selected members further include

other members in the research study which in turn include other members in

the study to form a pool of participants [110].

In this study, a combination of purposive and snowball sampling has been employed

wherein those respondents have been targeted who have worked / are working on large

scale agile software development projects. The selected respondents have recruited

other prospective members in the questionnaire survey who possess prior or current

experience of working on large-scale agile projects.

3.7 Sample Size

The sample, as the name suggests, is the representation of population [111]. In this

study, the population refers to the industry practitioners working on large scale agile

software development projects. As it is not possible to consider the whole population

for data collection [112], various sampling techniques based on different parameters

37

are utilized to extract samples out of a population [113]. The population size can never

be estimated precisely, it is always fixed arbitrarily / hypothetically large enough

commensurate with the estimated population [100]. In this study, the population size

has been arbitrarily selected as 100,000 industry practitioners who have worked / are

working on large scale agile software development projects. The sample size has been

calculated through an online website SurveyMonkey [114] which came out to be 138.

The confidence interval, usually expressed as a percentage, is a measure of the

similarity between the results of repeated data collection procedure from a certain

population [115]. Based on the guidelines of U.S. Census Bureau [116], the confidence

interval in this study has been taken as 90% which means that if the questionnaire

survey is repeating by selecting different samples from the same population, the results

obtained would be similar 90% of the time.

3.8 Data Collection Method

The data collection method employed in this study is the Questionnaire Survey which

seems to be the most suitable method in this context. Because the data has to be

collected from individuals who have prior or current experience of working on large

scale agile software development projects, online questionnaire survey has been

conducted via Google Forms. The questionnaire has been shared with prospective

respondents through internet using snowball approach.

3.9 Respondents’ Profile for Survey

The respondents have been carefully selected who have worked or are currently

working on large scale agile software development projects. The responses have been

received from respondents with a diverse range of industry experience and have

worked in IT industry in different capacities. Moreover, the respondents have been

dispersed round the globe and have contributed their valuable opinions while filling

out the questionnaire. The demographics of the respondents based on their large-scale

agile work experience, designation and their organization size are graphically

illustrated by these pie charts.

38

Figure 3.2: Large Scale Agile Work Experience of Survey Respondents

Figure 3.3: Designation of Survey Respondents

Less than 1 year
12%

1 to 3 years
25%

3 to 5 years
32%

More than 5 years
31%

Large Scale Agile Work Experience

Software
Developer

53%

Team Leader
17%

Manager
20%

Freelancer
10%

Designation of Respondents

39

Figure 3.4: Organization Size of Survey Respondents

3.10 Data Analysis

Once the data relevant to the research is collected, it is cleansed to remove the junk

data, filtered for irrelevant responses and then the valid responses are subject to

statistical treatment to reveal useful information that helps in answering the research

questions by drawing conclusions from analyzed data [75]. Data analysis phase

employs a complete set of statistical tools, techniques and processes to process and

analyze the data [117]. As part of this research study, different statistical methods shall

be used to process and analyze the data. Since the data used in this research is numeric

in nature, quantitative data analysis shall be performed. A brief description of each

statistical tool, to be used in this research, is, however, provided for quick review of

the readers.

 Arithmetic mean / average is a statistical tool that computes the average value

of a set of numeric data items. It is denoted by X̅ and represents the mean /

central value of a data set. In this research study, arithmetic mean shall be used

for the computation of the average priority of each demotivator as represented

by all the survey respondents.

Small Scale
7%

Medium Scale
20%

Large Scale
51%

Very Large Scale
22%

Organization Size

40

 Cronbach’s Alpha Reliability Test is a statistical tool that is used to evaluate

the internal consistency of the data items of a questionnaire. In other words, it

computes the numerical value of the reliability of a data collection instrument

that denotes the extent to which the data items of a data collection instrument

together measure a single construct. Cronbach’s alpha test shall be applied on

the questionnaire to assess its overall reliability and internal consistency.

 Pearson’s correlation coefficient measures the degree of strength and direction

of association between two data sets. It returns a numeric value ranging from

-1 to +1 where transition from -1 to +1 indicates the strong positive relationship

between the data sets and transition from -1 to +1 indicates strong negative

relationship between the data sets.

3.11 Summary

This chapter has explained in detail the research methodology adopted in this research

study. The next chapter explains the results of data analysis phase and discusses the

results obtained from data analysis phase with respect to the research questions and

objectives.

41

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Overview

In this chapter, the data collected through questionnaire survey has undergone

statistical analysis and the results obtained have been explained in detail along with

the tests performed. The results of data analysis have been discussed in the light of the

research questions and objectives.

4.2 Data Analysis Tools

The data analysis entails the use of various statistical methods for filtering, cleansing,

ordering, analyzing, processing, interpreting and presenting data and obtained results.

The statistical methods can be quite complex, requiring the use of software tools that

provide easy to use interface for performing all steps of data analysis. Software tools

provide a pre-built set of mathematical and statistical methods that can be applied to

the data to yield the required results. A brief overview of the software tools used for

data analysis as part of this research study is given below.

 Microsoft Excel is a leading spreadsheet program by Microsoft

Corporation that provides built in tools for data manipulation, analysis and

visualization for easy interpretation and presentation. The real strength of

Excel lies in the availability of several callable mathematical functions that

return the value after computation.

42

 Statistical Package for Social Sciences (SPSS) is a powerful statistical

software suite produced and marketed by IBM®. It provides a powerful yet

user friendly environment for performing complex statistical data analysis

procedures, data mining algorithms, business data intelligence, data

forecasting to support business decision support systems.

In this study, Microsoft Excel Professional Plus 2019 and IBM SPSS Statistics

Version 23 software suite have been used for statistical data analysis.

4.3 Preliminary Data Processing

The data obtained from the questionnaire survey has been received in the form of

downloadable Microsoft Excel Worksheet which contains the responses of all the

respondents where each row represents the responses of a single respondent. The

worksheet contains the frequency of occurrence of each demotivator along with its

impact as selected by each respondent and the list of best practices corresponding to

each demotivator which, in the opinion of the respondent, can address that particular

demotivator in an effective manner.

The frequency and impact of each demotivator is represented by its corresponding

label and each label in turn denotes a numeric rating as given in the following table.

Table 4.1: Labels of Frequency and Impact of Demotivators

Sr. Frequency Label Numeric Rating Impact Label Numeric Rating

1 Rare 1 Incidental 1

2 Unlikely 2 Minor 2

3 Possible 3 Moderate 3

4 Likely 4 Major 4

5 Almost Certain 5 Extreme 5

43

The corresponding frequency and impact labels have been replaced by their

corresponding numeric ratings in the Excel response sheet using Find and Replace

feature. This step converts the entire data in the Excel sheet into numeric format to

enable the application of the mathematical and statistical tests. This sets the stage for

the calculation of priority of the demotivators.

4.4 Ranking of Demotivators

In this research study, the priority of the demotivator is defined as the product of

frequency of a demotivator and its impact [118]. The higher the priority value of a

demotivator, the higher its criticality. The priority of each demotivator is calculated by

using the formula P = FD * ID {where P = Priority, FD = Frequency of Demotivator,

ID = Impact of Demotivator} [118]. The following table provides the theoretical

illustration of calculation of priority of demotivators.

Table 4.2: Illustration of Calculation of Priority of Demotivators

Respondent FD1 FD2 ID1 ID2 P1 = FD1 * ID1 P2 = FD2 * ID2

R1 A C B D A * B C * D

R2 P R Q S P * Q R * S

RN W Y X Z W * X Y * Z

Sum of Priorities ∑ 𝑃1

𝑁

1

 ∑ 𝑃2

𝑁

1

Arithmetic Mean of Priorities of

Demotivators
X̅ =

∑𝑃1

𝑁
 X̅ =

∑𝑃2

𝑁

As depicted in the above table, the priority of a demotivator is computed by calculating

the product of its frequency and impact as assigned by each respondent. The sum of

the priority of each demotivator, assigned by all the respondents is calculated and the

arithmetic mean (X̅) is then calculated to gauge the priority of a particular demotivator

as represented by all the respondents. In other words, the arithmetic mean (X̅) of

priority of each demotivator represents the criticality of that particular demotivator

according to all the survey respondents in a collective manner. Based on the average

44

priority (X̅), the demotivators are listed in the order of decreasing priority whereby the

demotivator carrying the highest priority is ranked first. The following table presents

the mean average priorities (X̅) of the demotivators.

 Table 4.3: Priorities of Demotivators from Industry Survey

Sr.

No.

Identifier Demotivators Priority (X̅)

1 D1 Traditional organizational culture 9.84

2 D2 General resistance to change 10

3 D3 Lack of management and commitment support 9.83

4 D4 Lack of agile experts 13.71

5 D5 Reluctance to adopt 10.48

6 D6 Bad customer relationship 9.23

7 D7 Problem in requirement elicitation 10.77

8 D8 Lack of knowledge 12.32

9 D9 Problem of team feedback / interfacing between

teams difficult / lack of teamwork

11.83

10 D10 Reduced productivity due to delay 12.43

11 D11 Lack of customer presence 9.18

12 D12 Lack of team training 13.38

13 D13 Lack of effective communication / distributed

environment / global distribution challenges

14.08

14 D14 Lack of team orientation 13.55

15 D15 Management unwilling to change 10.36

16 D16 Too high workload and pressure 15.46

17 D17 Misunderstanding agile concepts 13.43

45

18 D18 Agile customized poorly / misinterpretation of

agile concepts

15.34

19 D19 Reverting to the old way of working /

management in waterfall model

10.41

20 D20 Using old and new approaches side by side 10.41

21 D21 Creating and estimating user stories hard 9.41

22 D22 Requirement ambiguity affects quality

assurance

9.93

23 D23 Lack of proper planning for large scale agile

projects

16.24

24 D24 Complexity of large-scale projects 17.68

4.5 Selection of Top 10 Demotivators

It is a common practice in research studies to highlight and emphasize the list of top

10 items that are relatively more important than others [33]. Maruf & Ghazia discuss

the list of top 10 software risk factors that occur in the software development process

[119], Sommerville & Sawyer highlight the top 10 suggested practices for the

requirements engineering phase [120], Taherdoost has explored and presented the top

10 most common causes of project failure in global marketplace [121], Xindong et al,

in their study, presented the top 10 algorithms most commonly used in data mining

field [122] which shows that the trend of focusing on the top 10 items is quite common.

Based on the practice of highlighting top 10 items in research studies, top 10

demotivators have been selected based on their priorities for further discussion and

analysis out of the 24 demotivators in this research study.

The following table presents the list of top 10 demotivators extracted from literature

that hinder the successful implementation of agile methodologies on large scale

projects in the order of decreasing priority / frequency of occurrence in literature

studies.

46

Table 4.4: Top 10 Demotivators Selected from Literature

Sr

Top 10 Demotivators Frequency of Occurrence

in Literature

1. Agile Difficult to Implement / Poor

Customization of Agile Methodologies

48%

2. Resistance to Change 38%

3. Requirements Engineering Challenges 38%

4. Lack of agile experts 36%

5. Lack of training / too high workload 31%

6. Coordination challenges in multi-team

environment

31%

7. Lack of management and commitment support 27%

8. Traditional organizational culture 22%

9. Using old and new approaches side by side 21%

10. Lack of effective communication 21%

4.6 Priorities of Demotivators from Industry Survey

The demotivators obtained from literature survey presented in Table 4.4 have been

sorted in descending order in Microsoft Excel based on their priorities. The top 10

demotivators having the highest priorities are listed below, according to the opinion of

industry practitioners. The table also presents the ranking of the corresponding

demotivators according to the literature citation.

Table 4.5: Top 10 Demotivators Selected from Industry Survey Based on Priorities

Sr

Identifier Demotivator

Average

Priority

Ranking in

Literature

1. D24 Complexity of Large-Scale Projects 17.68 12

2. D23
Lack of Proper Planning for Large

Scale Agile Projects
16.24 14

3. D16 Too High Workload and Pressure 15.46 5

4. D18 Agile Customized Poorly 15.34 1

47

5. D13 Lack of Effective Communication 14.08 10

6. D4 Lack of Agile Experts 13.71 4

7. D14 Lack of Team Orientation 13.55 6

8. D17 Misunderstanding Agile Concepts 13.43 11

9. D12 Lack of Team Training 13.38 5

10. D10 Reduced Productivity due to Delay 12.43 16

Based on the findings presented in Table 4.5, the results of literature survey are

mapped with the results obtained from industry survey. The column “Sr. No.” indicates

the priority of a demotivator according to the opinion of industry practitioners and the

column “Ranking in Literature” presents the corresponding priority of that particular

demotivator as found in literature. Here, according to industry survey, complexity of

large-scale projects is the most important demotivator carrying the highest priority and

is thus the most critical demotivator (occupying 1st Serial No.) whereas in the

literature, the same demotivator is ranked at Serial No.12. Similarly, poor

customization of agile is ranked as the most critical demotivator (occupying 1st Serial

No.) in literature whereas according to the results of survey, it is ranked at Serial No.4.

In this way, the relative ranking of demotivators as cited in literature is mapped with

the opinion of the industry practitioners. Out of the top 10 demotivators highlighted

by both, literature and industry survey, there are 6 common demotivators that have

been equally stressed and emphasized by both literature results and software

practitioners viz too high workload and pressure, agile customized poorly, lack of

effective communication, lack of agile experts, lack of team orientation, lack of team

training. These 6 demotivators are even more important due to their presence /

criticality in the literature as well as industry survey results.

However, there exist some differences too between the results of literature review and

industry survey. Some of the demotivators not labelled as critical by the literature

survey are ranked critical by the industry survey. In other words, industry practitioners

have ranked a particular demotivator as important / most frequently occurring as

opposed to its citation frequency in the literature e.g., complexity of large-scale

software projects has been ranked 1st in the list of top 10 demotivators by the industry

48

practitioners whereas the same demotivator is not found in the list of top 10

demotivators extracted from literature survey, rather it is ranked at 12th position.

Similarly, resistance to change is the 2nd highest cited demotivator in the literature for

scaling agile methodologies whereas it is not reported in the list of top 10 demotivators

obtained from industry survey.

4.7 Measurement of Internal Consistency of Questionnaire

Instrument

The internal consistency defines the reliability / correlation between the items of a data

set in a data collection instrument [123]. The most commonly used and accurate

measure of calculation of internal consistency & reliability of data collection

instrument is Cronbach’s Alpha reliability test whose main aim is to compute the value

of internal consistency between the items of a data collection instrument with the

higher value of Cronbach’s Alpha representing higher reliability of data collection

instrument [124]. The results of running Cronbach’s Alpha reliability test for

measuring the degree of internal consistency and reliability of the designed

questionnaire are presented in the following table.

Table 4.6: Results of Cronbach’s Alpha Reliability Test

Statistical

Test

Measure of Internal

Consistency of

Question Set of

Frequency of

Occurrence of

Demotivators (First

Subsection)

Measure of

Internal

Consistency of

Question Set of

Impact of

Demotivators

(Second

Subsection)

Combined

Measure of

Internal

Consistency of

Both Subsections

Cronbach’s

Alpha

Reliability

Test

0.880 0.875 0.928

No. of Items 24 24 48

49

The interpretation of results of Table 4.6 based on the reference values range of

Cronbach’s Alpha Reliability Test (excellent for > 0.9 value, good for > 0.8 value,

acceptable for > 0.7 value, questionable for > 0.6 value, poor for > 0.5 value and

unacceptable for < 0.5 value) provided by George & Mallery [98] is given below.

 A value of 0.880 measures good correlation and reliability between the data

items of first subsection of questionnaire containing the question set of

frequency of occurrence of demotivators.

 A value of 0.875 measures good correlation and consistency between the data

items of second subsection of questionnaire containing the question set of

impact of demotivators.

 The reliability score of 0.928 measures excellent combined correlation and

internal consistency between the data items of first and second subsections of

the questionnaire.

4.8 Correlation Analysis

Among the various statistical analysis tools, one of them is the correlation analysis.

Through correlational analysis, the measure of relationship between two data sets is

quantitatively expressed using a correlation coefficient [125]. It is used to determine

the strength and direction of the linear association of two data sets [126]. Based on the

recommendations of Schober & Patrick [127], the value of correlational coefficient

ranges from -1 to +1 which indicates that as the value of correlation coefficient moves

towards -1, the strength of the relationship between two variables increases in the

negative direction i.e. one variable increases as the other one decreases and as the value

of correlation coefficient moves towards +1, the strength of the relationship between

two variables increases in the positive direction i.e. one variable increases as the other

one increases.

50

Different types of coefficients are used for the correlational analysis in SPSS out of

which Pearson’s Coefficient is most commonly used [128]. It quantitatively expresses

the direction and relationship of linear association between two data sets [126]. In this

study, the correlational analysis test is executed on the two data sets to find out the

strength and direction of the relationship between the results obtained from literature

survey and the ones obtained from the industry survey. The frequency of occurrence

of top 10 demotivators extracted from literature and the top 10 demotivators from

industry survey are taken as two data sets for calculation of Pearson’s Correlational

Coefficient. The results are presented in the following table.

Table 4.7: Results of Pearson’s Correlation Test

 Frequency of

Occurrence in

Literature

Average Priority

of Demotivators

from Industry

Survey

Frequency of

Occurrence in

Literature

Pearson Correlation 1 0.956

No. of Items 10 10

Average Priority of

Demotivators from

Industry Survey

Pearson Correlation 0.956 1

No. of Items 10 10

By interpreting the results mentioned in table 4.7 according to the guidelines of

Schober & Patrick [127], the value of Pearson’s Correlation Coefficient of +0.956

suggests a very strong positive correlation between the results of literature survey and

the opinion of industry practitioners. There is a high degree of association between the

list of top 10 demotivators faced while scaling up agile methodologies as extracted

from the literature and the list of top 10 demotivators computed from the statistical

analysis of the data obtained from the industry survey of the large-scale agile

practitioners.

51

4.9 Best Practices to Address Demotivators

The frequency of selection of each practice corresponding to each demotivator is

calculated by using countif(“range of cells”, “criteria”) function in Microsoft Excel.

This function returns the count of “criteria” parameter in the specified “range of cells”.

The countif() function is executed for all the recommended practices of each

demotivator and the practice having the highest frequency / count is attributed to that

particular demotivator as the best practice to address it. The percentage of selection of

the particular best practice is simply another form of its representation. It is calculated

using the following equation.

Percentage =
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝐵𝑒𝑠𝑡 𝑃𝑟𝑎𝑐𝑡𝑖𝑐𝑒

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜.𝑜𝑓 𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑡𝑠
 𝑥 100%

The following table shows the demotivator followed by the best practice to address it,

the frequency of selection followed by its percentage of respondents who selected this

practice as the best practice to address that particular demotivator.

Table 4.8: List of Best Practices to Address Demotivators

Sr

Identifier Demotivator Best Practice Frequency Percentage

1. D24 Complexity of

Large-Scale

Projects

Formulation of

Realistic Work

Breakdown

Structure

64 43%

2. D23 Lack of Proper

Planning for

Large Scale Agile

Projects

Follow up

Meetings to

Discuss

Progress

61 40%

3. D16 Too High

Workload and

Pressure

Enable Team

Members to

Follow Their

Own Schedule

53 36%

52

4. D18 Agile

Customized

Poorly

Outsource Agile

Projects

63 43%

5. D13 Lack of Effective

Communication

Appoint a

Project

Facilitator to

Ensure

Coordination

Between Teams

55 37%

6. D4 Lack of Agile

Experts

Retention of

Seasoned

Experts

58 40%

7. D14 Lack of Team

Orientation

Make Team

Coordination

Top Priority

61 41%

8. D17 Misunderstanding

Agile Concepts

Outsource Agile

Projects

63 42%

9. D12 Lack of Team

Training

Induct

Experienced

Team Members

60 39%

10. D10 Reduced

productivity due

to delay

Formulate

Realistic

Timelines

67 44%

4.10 Discussion

After the statistical processing of the data is completed, the results are obtained which

are then discussed and explained to the readers. In this section, the results of the

statistical analysis of the data are elaborated in a simpler manner for easy

comprehension. The interpreted results are then mapped with the research questions

and research findings are justified.

53

The internal consistency / reliability of the data items of the questionnaire has been

evaluated with Cronbach’s Alpha Reliability Test which approximately calculates the

value of internal consistency between the items of a data collection instrument, the

higher value of Cronbach’s Alpha indicates high reliability of data collection

instrument. Based on the recommendations of George & Mallery, the Cronbach’s

Alpha for first and second subsections of the questionnaire used in this research study

comes out to be 0.880 and 0.875 respectively which indicates good correlation and

consistency between the data items of the respective subsections. The overall

reliability score of both subsections of the questionnaire is 0.928 which indicates

excellent internal consistency of the questionnaire instrument designed in this research

study. In other words, the internal consistency score of 0.928 indicates that the

different data items of the questionnaire together measure a single construct quite

reliably.

After the statistical treatment of data obtained from industrial survey, the top 10

demotivators cited in literature have been juxtaposed with top 10 demotivators in the

opinion of industry practitioners and their relative rankings based on their priorities

have been compared. Out of the top 10 demotivators list from literature and industry

survey, 6 demotivators are reported as crucial by both literature and industry, which

establishes strong concurrence between results of the literature survey and industry

survey.

The correlational analysis of the two data sets of top 10 demotivators extracted from

literature and obtained from industry survey, presented in Table 4.7, has been carried

out using the most commonly used correlation coefficient viz Pearson’s Coefficient.

Correlational analysis measures the strength of the relationship between two data sets

which can be positive or negative. In this research study, the result of the application

of Pearson’s Coefficient on the data set of top 10 demotivators extracted from literature

and the top 10 demotivators obtained from industry survey, yields a value of +0.956,

which when interpreted according to the guidelines of Schober & Patrick, suggests a

very strong positive relationship between the results of literature survey and the

industry survey. In other words, the opinion of the industry practitioners validates the

findings of the literature survey to a great extent.

54

Table 4.8 displays the list of the top 10 demotivators along with the best practice to

address that particular demotivator. The “Demotivator” column contains the

demotivator followed by the “Best Practice” which contains the best practice to

address that particular demotivator, followed by the “Frequency” column which

contains a numeric value that indicates the frequency of selection of the particular best

practice in the preceding column by the survey respondents e.g., according to 61

survey respondents, follow up meetings to discuss progress can best address the

problem of proper planning for large scale agile projects. Likewise, 55 respondents are

of the view that appointing a project facilitator to ensure coordination between teams

is the best measure to address and resolve the problem of lack of effective

communication.

The last column “Percentage” contains the percentage of the survey respondents who

selected that particular best practice the highest number of times. The frequency is

converted into percentage form and represented in this column as an alternate form of

representation. In this way, each of the top 10 demotivators have their associated best

practices along with the frequency of its selection and percentage of the respondents

selecting that particular suggested practice.

The following table consolidates the answers to the research questions R1 viz the

demotivators faced by industry practitioners during the large-scale agile development

projects and R2 viz the recommendations to address the identified demotivators for

large scale agile development projects. For the sake of simplicity, the top 10

demotivators which are commonly occurring and more important than the other ones,

have been selected and presented in the following table. The column “Demotivators”

presents the top 10 leading demotivators faced by industry practitioners during large

scale agile development projects and the column “Best Practice” presents the

recommendation corresponding to that particular demotivator to help address it in the

most efficient manner.

Table 4.9: Mapping of Literature Survey Results with Industry Survey

Sr

Identifier Demotivator Best Practice

55

1. D24
Complexity of Large-Scale

Projects

Formulation of Realistic

Work Breakdown Structure

2. D23
Lack of Proper Planning for

Large Scale Agile Projects

Follow up Meetings to

Discuss Progress

3. D16 Too High Workload and Pressure

Enable Team Members to

Follow Their Own Schedule

4. D18 Agile Customized Poorly Outsource Agile Projects

5. D13
Lack of Effective

Communication

Appoint a Project Facilitator

to Ensure Coordination

Between Teams

6. D4 Lack of Agile Experts

Retention of Seasoned

Experts

7. D14 Lack of Team Orientation

Make Team Coordination

Top Priority

8. D17
Misunderstanding Agile

Concepts
Outsource Agile Projects

9. D12 Lack of Team Training

Induct Experienced Team

Members

10. D10
Reduced Productivity due to

Delay

Formulate Realistic

Timelines

4.11 Summary

In this chapter, the different phases of statistical data analysis have been described

along with the detailed discussion of results of the data analysis phase. The next

chapter provides the future research directions and some concluding remarks.

56

CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Overview

This chapter presents the overall summary of the research contributions made by this

study and the future research directions that can be pursued to extend the existing

research domain.

5.2 Conclusions

This research study has mainly focused on the initial extraction of demotivators faced

while scaling agile methodologies at large scale from literature. The questionnaire

survey has been designed and conducted to gather the viewpoint of the industry

practitioners regarding the demotivators highlighted in literature. Thereafter, the

priority of those demotivators is calculated by considering the frequency of occurrence

of those demotivators and their relative impact. The demotivators have been listed in

the order of decreasing priority and top 10 demotivators have been filtered out for

further discussion/comparison & evaluation. The best practices to address the

demotivators have been selected based on the frequency of selection by the

respondents with the practice selected the most by the respondents has been attributed

to the corresponding demotivator as the best practice to address it. The list of key

demotivators and their best practices highlighted by this research study will help out

the managers in dealing with the demotivators faced while scaling up agile

methodologies which will yield higher success rate of agile methodologies when

applied to large scale software development projects.

57

5.2 Limitations

Limitations are invariably an inherent part of any research work which are to be

minimized / suppressed. This research study aims to conduct a questionnaire survey to

validate the findings of literature regarding the demotivators faced while scaling up

agile methodology. However, certain potential limitations exist in this research study

such as

 The responses of the respondents participating in the questionnaire survey

might not depict their true opinions.

 There is a need to explore more demotivators faced by industry practitioners

while scaling up agile methodology. For this purpose, case study approach can

be adopted for deep understanding.

 The literature explored as part of this research study is not exhaustive as it

contains the published material in journal articles and conference proceedings

in English Language. However, it is quite possible that published material

relevant to the domain of this research study is available in other languages too

which has been left unexplored due to language constraints.

5.3 Future Work

This research study has specifically considered the demotivators faced while scaling

up agile methodologies as found in the literature and conducted a questionnaire survey

to gather the opinion of industry practitioners regarding those demotivators. However,

there is a need to consider the motivators mentioned in literature for scaling up agile

methodologies and conduct a similar survey to consider the viewpoint of industry

practitioners regarding the mentioned motivators [129]. The motivators can also be

prioritized based on their criticality to help management focus on the most critical ones

to successfully scale agile methodologies on large scale [130]. This can provide an

58

ample research direction for researchers in future to extend the existing effort to cover

another similar aspect of this study.

5.4 Summary

This chapter has discussed the salient contributions made by this research study.

Moreover, the future research directions to extend the existing study have also been

indicated for the interested researchers to explore.

59

REFERENCES

[1] L. M. Maruping and S. Matook, “The evolution of software development

orchestration: current state and an agenda for future research,” Eur. J. Inf. Syst.,

vol. 29, no. 5, pp. 443–457, 2020, doi: 10.1080/0960085X.2020.1831834.

[2] A. Kakar and A. Kakar, “A Brief History of Software Development and

Manufacturing,” SAIS 2020 Proc., no. November, 2020, [Online]. Available:

https://aisel.aisnet.org/sais2020/4.

[3] J. Yu, “Research Process on Software Development Model,” IOP Conf. Ser.

Mater. Sci. Eng., vol. 394, no. 3, 2018, doi: 10.1088/1757-899X/394/3/032045.

[4] R. Sherman, Project Management. Business Intelligence Guidebook. 2015.

[5] W. Van Casteren, “The Waterfall Model And The Agile Methodologies : A

Comparison By Project Characteristics-Short The Waterfall Model and Agile

Methodologies,” Acad. Competences Bachelor, no. February, pp. 10–13, 2017,

doi: 10.13140/RG.2.2.36825.72805.

[6] M. STOICA, M. MIRCEA, and B. GHILIC-MICU, “Software Development:

Agile vs. Traditional,” Inform. Econ., vol. 17, no. 4/2013, pp. 64–76, 2013, doi:

10.12948/issn14531305/17.4.2013.06.

[7] S. T. ind, Karambir, “A Simulation Model for the Spiral Software Development

Life Cycle,” Int. J. Innov. Res. Comput. Commun. Eng., vol. 03, no. 05, pp.

3823–3830, 2015, doi: 10.15680/ijircce.2015.0305013.

[8] L. Khoza and C. Marnewick, “Waterfall and agile information system project

success rates-a South African perspective,” South African Comput. J., vol. 32,

no. 1, pp. 43–73, 2020, doi: 10.18489/sacj.v32i1.683.

[9] J. Johnson and H. Mulder, “MONEY PIT : The True Cost of a Project,” no.

January 2015, pp. 1–10, 2015, doi: 10.13140/RG.2.2.16556.62087.

[10] T. Sekgweleo, “Understanding Traditional Systems Development

Methodologies,” vol. 4, no. 3, pp. 51–58, 2015.

[11] M. Sameen Mirza and S. Datta, “Strengths and Weakness of Traditional and

Agile Processes - A Systematic Review,” J. Softw., vol. 14, no. 5, pp. 209–219,

2019, doi: 10.17706/jsw.14.5.209-219.

60

[12] G. Papadopoulos, “Moving from Traditional to Agile Software Development

Methodologies Also on Large, Distributed Projects.,” Procedia - Soc. Behav.

Sci., vol. 175, pp. 455–463, 2015, doi: 10.1016/j.sbspro.2015.01.1223.

[13] A. Aitken and V. Ilango, “A comparative analysis of traditional software

engineering and agile software development,” Proc. Annu. Hawaii Int. Conf.

Syst. Sci., pp. 4751–4760, 2013, doi: 10.1109/HICSS.2013.31.

[14] P. Gerlero, “Successes and failures in software development project

management: A systematic literature review,” CEUR Workshop Proc., vol.

2992, pp. 131–145, 2021.

[15] Y. Lu, L. Luo, H. Wang, Y. Le, and Q. Shi, “Measurement model of project

complexity for large-scale projects from task and organization perspective,” Int.

J. Proj. Manag., vol. 33, no. 3, pp. 610–622, 2015, doi:

10.1016/j.ijproman.2014.12.005.

[16] J. R. San Cristóbal, L. Carral, E. Diaz, J. A. Fraguela, and G. Iglesias,

“Complexity and project management: A general overview,” Complexity, vol.

2018, 2018, doi: 10.1155/2018/4891286.

[17] B. Y. Tsai, S. Stobart, N. Parrington, and B. Thompson, “Iterative design and

testing within the software development life cycle,” Softw. Qual. J., vol. 6, no.

4, pp. 295–310, 1997, doi: 10.1023/a:1018528506161.

[18] C. Larman and V. R. Basili, “Iterative and incremental development: A brief

history,” Computer (Long. Beach. Calif)., vol. 36, no. 6, pp. 47–56, 2003, doi:

10.1109/MC.2003.1204375.

[19] Q. Wang and X. Lai, “Requirements management for the incremental

development model,” Proc. - 2nd Asia-Pacific Conf. Qual. Software, APAQS

2001, pp. 295–301, 2001, doi: 10.1109/APAQS.2001.990034.

[20] B. K. Bittner and I. Spence, Managing Iterative Software Development Projects

Publisher : Addison Wesley Professional Pub Date : June 27 , 2006 Print ISBN-

10 : 0-321-26889-X Print ISBN-13 : 978-0-321-26889-1 Pages : 672. 2006.

[21] P. Hohl et al., “Back to the future: origins and directions of the ‘Agile

Manifesto’ – views of the originators,” J. Softw. Eng. Res. Dev., vol. 6, no. 1,

2018, doi: 10.1186/s40411-018-0059-z.

[22] E. M. Schön, M. Escalona, and J. Thomaschewski, “Agile Values and Their

Implementation in Practice,” Int. J. Interact. Multimed. Artif. Intell., vol. 3, no.

5, p. 61, 2015, doi: 10.9781/ijimai.2015.358.

61

[23] R. Kumar, A. Gupta, and H. Singh, “Agile Methodologies: Working

Mechanism with Pros and Cons,” Gian Jyoti E-Journal, vol. 4, no. 2, pp. 18–

27, 2014, [Online]. Available:

www.en.wikipedia.org/wiki/File:SDLC_Phases_Related_to_Management_Co

ntrols.jpg.

[24] D. S. Nguyen, “Success Factors That Influence Agile Software Development

Project Success,” Am. Sci. Res. J. Eng. Technol. Sci., vol. 17, no. 1, pp. 172–

222, 2016.

[25] A. M. H. Al-Said Ahmad, “Agile Large-Scale Software Development: Success

Factors, Challenges and Solutions,” i-manager’s J. Softw. Eng., vol. 8, no. 3,

pp. 1–12, 2014, doi: 10.26634/jse.8.3.2807.

[26] J. Magne, “Do Agile Methods Work for Large Software Projects ?,” pp. 179–

190, 2018, doi: 10.1007/978-3-319-91602-6.

[27] K. Dikert, M. Paasivaara, and C. Lassenius, “Challenges and success factors for

large-scale agile transformations: A systematic literature review,” J. Syst.

Softw., vol. 119, no. June, pp. 87–108, 2016, doi: 10.1016/j.jss.2016.06.013.

[28] M. Faisal Abrar et al., “De-motivators for the adoption of agile methodologies

for large-scale software development teams: An SLR from management

perspective,” J. Softw. Evol. Process, vol. 32, no. 12, pp. 1–20, 2020, doi:

10.1002/smr.2268.

[29] K. Dikert, M. Paasivaara, and C. Lassenius, “Challenges and success factors for

large-scale agile transformations: A systematic literature review,” J. Syst.

Softw., vol. 119, pp. 87–108, 2016, doi: 10.1016/j.jss.2016.06.013.

[30] M. Kalenda, P. Hyna, and B. Rossi, “Scaling agile in large organizations:

Practices, challenges, and success factors,” J. Softw. Evol. Process, vol. 30, no.

10, pp. 1–24, 2018, doi: 10.1002/smr.1954.

[31] M. Shameem, R. R. Kumar, M. Nadeem, and A. A. Khan, “Taxonomical

classification of barriers for scaling agile methods in global software

development environment using fuzzy analytic hierarchy process,” Appl. Soft

Comput. J., vol. 90, p. 106122, 2020, doi: 10.1016/j.asoc.2020.106122.

[32] D. Wright, “Best Practices for Large-Scale AgileTransformations,” vol. 1277,

no. 800, p. 64, 2018, [Online]. Available:

https://scholarsbank.uoregon.edu/xmlui/handle/1794/23896.

[33] J. Iqbal et al., Requirements engineering issues causing software development

62

outsourcing failure, vol. 15, no. 4. 2020.

[34] O. Kaiwartya et al., “Internet of Vehicles: Motivation, Layered Architecture,

Network Model, Challenges, and Future Aspects,” IEEE Access, vol. 4, pp.

5356–5373, 2016, doi: 10.1109/ACCESS.2016.2603219.

[35] I. M. Del Águila, J. Palma, and S. Túnez, “Milestones in software engineering

and knowledge engineering history: A comparative review,” Sci. World J., vol.

2014, 2014, doi: 10.1155/2014/692510.

[36] B. John N and B. Randell, “Software Engineering Techniques: Report on a

Conference Sponsored by the NATO Science Committee.,” no. April, p. 16,

1970.

[37] B. Randell, “Fifty Years of Software Engineering - or - The View from

Garmisch,” no. May, pp. 1–9, 2018, [Online]. Available:

http://arxiv.org/abs/1805.02742.

[38] M. Anjum and D. Budgen, An investigation of modelling and design for

software service applications, vol. 12, no. 5. 2017.

[39] J. D. Morgan, “Applying 1970 waterfall lessons learned within today’s agile

development process,” PM World J., vol. VII, no. Vii, pp. 1–19, 2018, [Online].

Available: www.pmworldlibrary.net.

[40] H. K. Aroral, “Waterfall Process Operations in the Fast-paced World: Project

Management Exploratory Analysis,” Int. J. Appl. Bus. Manag. Stud., vol. 6, no.

1, pp. 91–99, 2021, [Online]. Available: http://www.ijabms.com/wp-

content/uploads/2021/05/05_ARORAL_PB.pdf.

[41] S. Nunez, M. Kabalan, P. Singh, and V. Moncada, “The Waterfall Model in

Large-Scale Development,” 2015 IEEE Canada Int. Humanit. Technol. Conf.

IHTC 2015, pp. 386–400, 2015, doi: 10.1109/IHTC.2015.7238067.

[42] D. A. Chart, B. D. Swanson, T. Knight, and J. A. Nido, “The software

development process – why it has failed us and a different approach going

forward,” AIAA Scitech 2021 Forum, no. January, pp. 1–12, 2021, doi:

10.2514/6.2021-1916.

[43] R. Pellerin, N. Perrier, X. Guillot, and P.-M. Léger, “Project Management

Software Utilization and Project Performance,” Procedia Technol., vol. 9, pp.

857–866, 2013, doi: 10.1016/j.protcy.2013.12.095.

[44] G. L. Rexing, “Software Project Management: Moving Beyond Project Plans,”

AT&T Tech. J., vol. 70, no. 2, pp. 40–48, 2008, doi: 10.1002/j.1538-

63

7305.1991.tb00344.x.

[45] R. Dwivedula and N. Bolloju, “Transitioning from plan-driven methods to agile

methods - Preparation for a systematic literature review,” Proc. 5th Int. Conf.

Commun. Electron. Syst. ICCES 2020, no. Icces, pp. 944–950, 2020, doi:

10.1109/ICCES48766.2020.09137917.

[46] K. A. O. Al-husseini and A. H. Obaid, “Usage of Prototyping in Software

Testing,” Multi-Knowledge Electron. Compr. J. Educ. Sci. Publ., no.

November, 2018.

[47] R. Nacheva, “Prototyping Approach in User Interface,” 2Nd Conf. Innov.

Teach. Methods, no. June, pp. 80–87, 2017, [Online]. Available:

https://www.researchgate.net/publication/317414969.

[48] C. W. Elverum, T. Welo, and S. Tronvoll, “Prototyping in New Product

Development: Strategy Considerations,” Procedia CIRP, vol. 50, pp. 117–122,

2016, doi: 10.1016/j.procir.2016.05.010.

[49] A. Susanto and Meiryani, “System Development Method with The Prototype

Method,” Int. J. Sci. Technol. Res., vol. 8, no. 7, pp. 141–144, 2019.

[50] E. J. Christie et al., “Prototyping strategies: Literature review and identification

of critical variables,” ASEE Annu. Conf. Expo. Conf. Proc., no. November 2018,

2015, doi: 10.18260/1-2--21848.

[51] T. Dingsøyr and N. B. Moe, “Research challenges in large-scale agile software

development,” ACM SIGSOFT Softw. Eng. Notes, vol. 38, no. 5, pp. 38–39,

2013, doi: 10.1145/2507288.2507322.

[52] A. Srivastava, D. Mehrotra, P. K. Kapur, and A. G. Aggarwal, “Analytical

evaluation of agile success factors influencing quality in software industry,” Int.

J. Syst. Assur. Eng. Manag., vol. 11, pp. 247–257, 2020, doi: 10.1007/s13198-

020-00966-z.

[53] K. Petersen and C. Wohlin, “The effect of moving from a plan-driven to an

incremental software development approach with agile practices: An industrial

case study,” Empir. Softw. Eng., vol. 15, no. 6, pp. 654–693, 2010, doi:

10.1007/s10664-010-9136-6.

[54] E. Altameem, “Impact of Agile Methodology on Software Development,”

Comput. Inf. Sci., vol. 8, no. 2, 2015, doi: 10.5539/cis.v8n2p9.

[55] M. Špundak, “Mixed Agile/Traditional Project Management Methodology –

Reality or Illusion?,” Procedia - Soc. Behav. Sci., vol. 119, pp. 939–948, 2014,

64

doi: 10.1016/j.sbspro.2014.03.105.

[56] H. Salameh, “What, When, Why, and How? A Comparison between Agile

Project Management and Traditional Project Management Methods,” Int. J.

Bus. Manag. Rev., vol. 2, no. 5, pp. 52–74, 2014, [Online]. Available:

http://www.eajournals.org/wp-content/uploads/What-When-Why-and-How-A-

Comparison-between-Agile-Project-Management-and-Traditional-Project-

Management-Methods.pdf.

[57] U. Muhammad et al., “Impact of agile management on project performance:

Evidence from I.T sector of Pakistan,” PLoS One, vol. 16, no. 4 April 2021, pp.

1–24, 2021, doi: 10.1371/journal.pone.0249311.

[58] M. Jørgensen and K. Moløkken, “How Large Are Software Cost Overruns ? A

Review of the 1994 CHAOS Report 3 A Comparison with Other Cost

Estimation Accuracy,” Inf. Softw. Technol., vol. 48, no. 4, pp. 297–301, 2006.

[59] C. Ebert and M. Paasivaara, “Scaling Agile,” IEEE Softw., vol. 34, no. 6, pp.

98–103, 2017, doi: 10.1109/MS.2017.4121226.

[60] M. Alqudah and R. Razali, “A review of scaling agile methods in large software

development,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 6, no. 6, pp. 828–837,

2016, doi: 10.18517/ijaseit.6.6.1374.

[61] F. Almeida and E. Espinheira, “Large-Scale Agile Frameworks: A Comparative

Review,” J. Appl. Sci. Manag. Eng. Technol., vol. 2, no. 1, pp. 16–29, 2021,

doi: 10.31284/j.jasmet.2021.v2i1.1832.

[62] VersionOne, “COLLAB.NET VERSIONONE.COM #StateOfAgile,” 12.

Annu. State Agil. Rep., 2018, [Online]. Available:

https://www.versionone.com/about/press-releases/12th-annual-state-of-agile-

survey-open/.

[63] G. Gruver and T. Mouser, “Leading the Transformation: Applying Agile and

DevOps Principles at Scale,” アエラ, vol. 13, no. 29, p. 107, 2015, [Online].

Available: http://ci.nii.ac.jp/naid/40004728554/.

[64] A. Putta, M. Paasivaara, and C. Lassenius, Benefits and challenges of adopting

the Scaled Agile Framework (SAFe): Preliminary results from a multivocal

literature review, vol. 11271 LNCS, no. January. Springer International

Publishing, 2018.

[65] K. Conboy and N. Carroll, “Implementing Large-Scale Agile Frameworks:

65

Challenges and Recommendations,” IEEE Softw., vol. 36, no. 2, pp. 44–50,

2019, doi: 10.1109/MS.2018.2884865.

[66] B. Hobbs and Y. Petit, “Agile Methods on Large Projects in Large

Organizations,” Proj. Manag. J., vol. 48, no. 3, pp. 3–19, 2017, doi:

10.1177/875697281704800301.

[67] N. B. Moe and M. Mikalsen, Large-Scale Agile Transformation: A Case Study

of Transforming Business, Development and Operations, vol. 383 LNBIP.

Springer International Publishing, 2020.

[68] S. A. K. Ghayyur, S. Ahmed, S. Ullah, and W. Ahmed, “The impact of

motivator and demotivator factors on agile software development. The case of

Pakistan,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 7, pp. 80–93, 2018, doi:

10.14569/IJACSA.2018.090712.

[69] M. Faisal, S. Rehman, N. Rashid, and S. Ali, “Large Scale Agile Adoption

Model from Management Perspective,” Int. J. Comput. Appl., vol. 152, no. 2,

pp. 31–35, 2016, doi: 10.5120/ijca2016911783.

[70] H. Tobi and J. K. Kampen, “Research design: the methodology for

interdisciplinary research framework,” Qual. Quant., vol. 52, no. 3, pp. 1209–

1225, 2018, doi: 10.1007/s11135-017-0513-8.

[71] C. Igwenagu, “Fundamentals of Research Methodology and Data Collection,”

L. Lambert Acad. Publ., no. June, p. 4, 2016, [Online]. Available:

https://www.researchgate.net/publication/303381524_Fundamentals_of_resear

ch_methodology_and_data_collection.

[72] D. Cvetkovic and B. Medic, “Research methodology in the 21st Century,” in

2017 40th International Convention on Information and Communication

Technology, Electronics and Microelectronics (MIPRO), 2017, pp. 891–894,

doi: 10.23919/MIPRO.2017.7973548.

[73] S. Jamshed, “Qualitative research method-interviewing and observation,” J.

Basic Clin. Pharm., vol. 5, no. 4, p. 87, 2014, doi: 10.4103/0976-0105.141942.

[74] Ponto J, “Understanding and Evaluating Survey Research,” J. Adv. Pract.

Oncol., vol. 6, no. 2, pp. 168–171, 2015, [Online]. Available:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4601897/pdf/jadp-06-

168.pdf.

[75] S. Vemuri, J. Hynson, L. Gillam, and K. Williams, “Simulation-Based

Research: A Scoping Review,” Qual. Health Res., vol. 30, no. 14, pp. 2351–

66

2360, 2020, doi: 10.1177/1049732320946893.

[76] D. M. Mertens, “Mixed methods,” Rev. Qual. Res. Soc. Sci., pp. 139–150, 2013,

doi: 10.4324/9780203813324-11.

[77] A. Shorten and J. Smith, “Mixed methods research: Expanding the evidence

base,” Evid. Based. Nurs., vol. 20, no. 3, pp. 74–75, 2017, doi: 10.1136/eb-

2017-102699.

[78] M. Patel and N. Patel, “Exploring Research Methodology : Review Article,”

Int. J. Res. Rev., vol. 6, no. 3, pp. 48–55, 2019.

[79] O. D. Apuke, “Quantitative Research Methods : A Synopsis Approach,” Kuwait

Chapter Arab. J. Bus. Manag. Rev., vol. 6, no. 11, pp. 40–47, 2017, doi:

10.12816/0040336.

[80] K. L. Wester, L. D. Borders, S. Boul, and E. Horton, “Research quality: Critique

of quantitative articles in the journal of counseling & development,” J. Couns.

Dev., vol. 91, no. 3, pp. 280–290, 2013, doi: 10.1002/j.1556-

6676.2013.00096.x.

[81] A. Babu, A. Maiya, P. Shah, and S. Veluswamy, “Clinical trial registration in

physiotherapy research,” Perspect. Clin. Res., vol. 4, no. 3, p. 191, 2013, doi:

10.4103/2229-3485.115387.

[82] P. Aspers and U. Corte, “What is Qualitative in Research,” Qual. Sociol., vol.

44, no. 4, pp. 599–608, 2021, doi: 10.1007/s11133-021-09497-w.

[83] L. Longo, “Empowering Qualitative Research Methods in Education with

Artificial Intelligence,” Adv. Intell. Syst. Comput., vol. 1068, no. December

2019, pp. 1–21, 2020, doi: 10.1007/978-3-030-31787-4_1.

[84] E. DePoy and L. N. Gitlin, “Mixed Method Designs,” Introd. to Res., pp. 173–

179, 2016, doi: 10.1016/b978-0-323-26171-5.00012-4.

[85] T. L. Jones, M. Baxter, and V. Khanduja, “A quick guide to survey research,”

Ann. R. Coll. Surg. Engl., vol. 95, no. 1, pp. 5–7, 2013, doi:

10.1308/003588413X13511609956372.

[86] K. Kelley, B. Clark, V. Brown, and J. Sitzia, “Good practice in the conduct and

reporting of survey research,” Int. J. Qual. Heal. Care, vol. 15, no. 3, pp. 261–

266, 2003, doi: 10.1093/intqhc/mzg031.

[87] G. Szolnoki and D. Hoffmann, “Online, face-to-face and telephone surveys -

Comparing different sampling methods in wine consumer research,” Wine

Econ. Policy, vol. 2, no. 2, pp. 57–66, 2013, doi: 10.1016/j.wep.2013.10.001.

67

[88] N. Michaelidou and S. Dibb, “Using email questionnaires for research: Good

practice in tackling non-response,” J. Targeting, Meas. Anal. Mark., vol. 14, no.

4, pp. 289–296, 2006, doi: 10.1057/palgrave.jt.5740189.

[89] B. Duffy, K. Smith, G. Terhanian, and J. Bremer, “Comparing data from online

and face-to-face surveys,” Int. J. Mark. Res., vol. 47, no. 6, pp. 615–630, 2005,

doi: 10.1177/147078530504700602.

[90] H. L. Ball, “Conducting Online Surveys,” J. Hum. Lact., vol. 35, no. 3, pp. 413–

417, 2019, doi: 10.1177/0890334419848734.

[91] J. F. Ebert, L. Huibers, B. Christensen, and M. B. Christensen, “Paper- or Web-

Based Questionnaire Invitations as a Method for Data Collection: Cross-

Sectional Comparative Study of Differences in Response Rate, Completeness

of Data, and Financial Cost,” J Med Internet Res, vol. 20, no. 1, p. e24, 2018,

doi: 10.2196/jmir.8353.

[92] S. Roopa and M. Rani, “Questionnaire Designing for a Survey,” J. Indian

Orthod. Soc., vol. 46, no. 4_suppl1, pp. 273–277, 2012, doi:

10.1177/0974909820120509s.

[93] M. R. Hyman and J. J. Sierra, “Open- versus close-ended survey questions,” no.

February, 2016.

[94] S. C. Desai, “Comparing the use of open and closed questions for Web-based

measures of the continued-influence effect,” 2018.

[95] B. A. Kitchenham and S. L. Pfleeger, “Personal opinion surveys,” Guid. to Adv.

Empir. Softw. Eng., pp. 63–92, 2008, doi: 10.1007/978-1-84800-044-5_3.

[96] I. Science, “Keywords: Fuzzy-Likert Scale, Perceived Risk, Social Research,

Structured Questionnaire. *,” vol. 6, no. 2, pp. 138–150, 2020.

[97] N. J. Duijm, “Recommendations on the use and design of risk matrices,” Saf.

Sci., vol. 76, no. July 2015, pp. 21–31, 2015, doi: 10.1016/j.ssci.2015.02.014.

[98] D. George and P. Mallery, “SPSS for Windows step by step: A simple guide

and reference. 11.0 update,” 2003.

[99] A. Casteel and N. L. Bridier, “Describing populations and samples in doctoral

student research,” Int. J. Dr. Stud., vol. 16, pp. 339–362, 2021, doi:

10.28945/4766.

[100] A. Delİce, “The sampling issues in quantitative research,” Educ. Sci. Theory

Pract., vol. 10, no. 4, pp. 2001–2019, 2001.

[101] H. Ames, C. Glenton, and S. Lewin, “Purposive sampling in a qualitative

68

evidence synthesis: A worked example from a synthesis on parental perceptions

of vaccination communication,” BMC Med. Res. Methodol., vol. 19, no. 1, pp.

1–9, 2019, doi: 10.1186/s12874-019-0665-4.

[102] N. Hospital, “Probability Sampling - A Guideline for Quantitative Health Care

Research,” Ann. African Surg., vol. 12, no. 2, pp. 95–99, 2015.

[103] E. Tipton, D. S. Yeager, R. Iachan, and B. Schneider, “Designing probability

samples to study treatment effect heterogeneity,” Exp. Methods Surv. Res. Tech.

that Comb. Random Sampl. with Random Assign., vol. 5, pp. 435–456, 2019,

doi: 10.1002/9781119083771.ch22.

[104] P. Lavrakas, “Nonprobability Sampling,” Encycl. Surv. Res. Methods, no. 2004,

p. 2010, 2013, doi: 10.4135/9781412963947.n337.

[105] T. W. Edgar and D. O. Manz, Exploratory Study. 2017.

[106] I. Etikan, “Comparison of Convenience Sampling and Purposive Sampling,”

Am. J. Theor. Appl. Stat., vol. 5, no. 1, p. 1, 2016, doi:

10.11648/j.ajtas.20160501.11.

[107] D. Rukmana, “Quota Sampling,” in Encyclopedia of Quality of Life and Well-

Being Research, A. C. Michalos, Ed. Dordrecht: Springer Netherlands, 2014,

pp. 5382–5384.

[108] R. S. Robinson, “Purposive Sampling,” in Encyclopedia of Quality of Life and

Well-Being Research, A. C. Michalos, Ed. Dordrecht: Springer Netherlands,

2014, pp. 5243–5245.

[109] B. B. Frey, “The SAGE Encyclopedia of Educational Research, Measurement,

and Evaluation.” Thousand Oaks,, California, 2018, doi:

10.4135/9781506326139 NV - 4.

[110] J. Kirchherr and K. Charles, “Enhancing the sample diversity of snowball

samples: Recommendations from a research project on anti-dam movements in

Southeast Asia,” PLoS One, vol. 13, no. 8, pp. 1–17, 2018, doi:

10.1371/journal.pone.0201710.

[111] D. P. Turner, “Sampling Methods in Research Design,” Headache, vol. 60, no.

1, pp. 8–12, 2020, doi: 10.1111/head.13707.

[112] R. G. Brereton, “Populations and samples,” J. Chemom., vol. 29, no. 6, pp. 325–

328, 2015, doi: 10.1002/cem.2695.

[113] H. Taherdoost, “Sampling Methods in Research Methodology ; How to Choose

a Sampling Technique for Research Hamed Taherdoost To cite this version :

69

HAL Id : hal-02546796 Sampling Methods in Research Methodology ; How to

Choose a Sampling Technique for,” Int. J. Acad. Res. Manag., vol. 5, no. 2, pp.

18–27, 2016.

[114] “No Title.” .

[115] J. Zhang, B. Hanik, and B. Chaney, “Confidence Intervals: Evaluating and

Facilitating Their Use in Health Education Research.,” Heal. Educ., vol. 40, no.

1, pp. 29–36, 2008.

[116] U. S. C. Bureau, “https://www.census.gov/programs-

surveys/saipe/guidance/confidence-intervals.html.” .

[117] K. Singh and R. Wajgi, “Data analysis and visualization of sales data,” IEEE

WCTFTR 2016 - Proc. 2016 World Conf. Futur. Trends Res. Innov. Soc. Welf.,

2016, doi: 10.1109/STARTUP.2016.7583967.

[118] T. Aven, “Risk assessment and risk management: Review of recent advances

on their foundation,” Eur. J. Oper. Res., vol. 253, no. 1, pp. 1–13, 2016, doi:

https://doi.org/10.1016/j.ejor.2015.12.023.

[119] M. Pasha, G. Qaiser, and U. Pasha, “A critical analysis of software risk

management techniques in large scale systems,” IEEE Access, vol. 6, pp.

12412–12424, 2018, doi: 10.1109/ACCESS.2018.2805862.

[120] U. Faber, “Requirements Engineering A Good Practice Guide,” 2016.

[121] H. Taherdoost and A. Keshavarzsaleh, “Critical Factors that Lead to Projects’

Success/Failure in Global Marketplace,” Procedia Technol., vol. 22, pp. 1066–

1075, 2016, doi: 10.1016/j.protcy.2016.01.151.

[122] X. Wu et al., “Top 10 algorithms in data mining,” Knowl. Inf. Syst., vol. 14, no.

1, pp. 1–37, 2008, doi: 10.1007/s10115-007-0114-2.

[123] M. D. Miller, “Classical test theory reliability,” Int. Encycl. Educ., pp. 27–30,

2010, doi: 10.1016/B978-0-08-044894-7.00235-9.

[124] S. K. Wadkar, K. Singh, R. Chakravarty, and S. D. Argade, “Assessing the

Reliability of Attitude Scale by Cronbach’s Alpha,” J. Glob. Commun., vol. 9,

no. 2, p. 113, 2016, doi: 10.5958/0976-2442.2016.00019.7.

[125] R. K. Prematunga, “Correlational analysis,” Aust. Crit. Care, vol. 25, no. 3, pp.

195–199, 2012, doi: 10.1016/j.aucc.2012.02.003.

[126] R. J. Janse et al., “Conducting correlation analysis: important limitations and

pitfalls,” Clin. Kidney J., vol. 14, no. 11, pp. 2332–2337, 2021, doi:

10.1093/ckj/sfab085.

70

[127] P. Schober and L. A. Schwarte, “Correlation coefficients: Appropriate use and

interpretation,” Anesth. Analg., vol. 126, no. 5, pp. 1763–1768, 2018, doi:

10.1213/ANE.0000000000002864.

[128] “Interpreation of the Correlation Coefficients A Basic Review.pdf.” .

[129] M. F. Abrar, M. S. Khan, S. Ali, and N. Rasheed, “Motivators for Large-Scale

Agile Adoption From Management Perspective : A Systematic Literature

Review,” IEEE Access, vol. 7, pp. 22660–22674, 2019, doi:

10.1109/ACCESS.2019.2896212.

[130] M. F. Abrar et al., “Motivators for Large-Scale Agile Adoption from

Management Perspective: A Systematic Literature Review,” IEEE Access, vol.

7, pp. 22660–22674, 2019, doi: 10.1109/ACCESS.2019.2896212.

71

APPENDIX A

An Industry Survey of Demotivators for Scaling up Agile Methodology

This questionnaire survey is being conducted as part of MS Software Engineering

Thesis Research program. The data collected shall solely be used for the purpose it

is intended and shall not, in any way, be shared with third parties. The

confidentiality of the respondents and their opinions shall be protected by all means.

Please take into account that this questionnaire pertains to those individuals who

have worked on large scale agile software development projects. If you are not one

of those, please ignore this questionnaire.

This questionnaire contains 3 sections which shall take approximately 10 to 15

minutes to complete. Your responses will make a huge contribution in my research

study and I shall ever be indebted to your support for filling out this form.

Demotivators are the factors that hinder the successful implementation of agile

methodologies on large scale software development projects. This survey is being

conducted for getting the opinion of industry practitioners regarding the

demotivators faced while scaling up agile methodologies.

Name

Your answer

Large Scale Agile Work Experience *
Less than 1 year
1 to 3 years
3 to 5 years
More than 5 years

Total Work Experience in Industry *
Less than 1 year
1 to 3 years
3 to 5 years
More than 5 years

Designation *
Software Developer
Team Leader
Manager
Other:

Organization Name *

Your answer

72

Organization Size *
Small Scale
Medium Scale
Large Scale
Very Large Scale

List of Demotivators for Scaling Up Agile Methodologies

The first table contains demotivators and the frequency of occurrence of each

demotivator in large scale agile software projects is provided based on 5 options.

Please select the relevant option that you think is the most relevant in each case.

The options are described as below.

1. Rare = (< 10%)

2. Unlikely = (10% - 35%)

3. Possible = (35% - 65%)

4. Likely = (65% - 90%)

5. Almost Certain = (> 90%)

The second table contains demotivators and the relevant impact of each

demotivator in large scale agile software projects. Please select the relevant option

that you think is the most relevant in each case.

Demotivators & Their Frequency of Occurrence *

Rare

Unlikely

Possible

Likely

 Almost Certain

Traditional Organizational Culture

General Resistance to Change

Lack of Management and Commitment Support

Lack of Agile Experts

Reluctance to Adopt

Bad Customer Relationship

Problem in Requirement Elicitation

Lack of Knowledge

Problem of Team Feedback

Reduced Productivity due to Delay

Lack of Customer Presence

Lack of Team Training

Lack of Effective Communication

Lack of Team Orientation

Management Unwilling to Change

Too High Workload and Pressure

Misunderstanding Agile Concepts

Agile Customized Poorly

Reverting to the Old Way of Working

73

Using Old and New Approaches Side by Side

Creating and Estimating User Stories Hard

Requirements Ambiguity Affects Quality Assurance

Lack of Proper Planning for Large Scale Agile Projects

Complexity of Large Scale Projects

Demotivators & Their Impact *

Incidental

Minor

Moderate

Major

Extreme

Traditional Organizational Culture

General Resistance to Change

Lack of Management and Commitment Support

Lack of Agile Experts

Reluctance to Adopt

Bad Customer Relationship

Problem in Requirement Elicitation

Lack of Knowledge

Problem of Team Feedback

Reduced Productivity due to Delay

Lack of Customer Presence

Lack of Team Training

Lack of Effective Communication

Lack of Team Orientation

Management Unwilling to Change

Too High Workload and Pressure

Misunderstanding Agile Concepts

Agile Customized Poorly

Reverting to the Old Way of Working

Using Old and New Approaches Side by Side

Creating and Estimating User Stories Hard

Requirements Ambiguity Affects Quality Assurance

Lack of Proper Planning for Large Scale Agile Projects

Complexity of Large-Scale Projects

Demotivators and Practices to Address Them

The demotivators are listed along with the practices to address them as found in

the literature. Please select the practices which you think can effectively address

the respective demotivators. If you need to suggest any other practice not listed

here, please feel free to do so.

Traditional Organizational Culture *
Reduce Bureaucracy

74

Self-Autonomous Teams
Independent Team Leaders
Other:

General Resistance to Change *
Innovative Thinking Culture
Flexible Development Approach
Change Embracing Attitude
Other:

Lack of Management and Commitment Support *
User Centric Approach
Self-Autonomous Teams
Leadership Change
Other:

Lack of Agile Experts *
Investment in Human Resource
Hiring Agile Experts
Retention of Seasoned Experts
Other:

Reluctance to Adopt *
Change Embracing Attitude
Flexible Development Approach
Promotion of Innovative Thinking Culture
Other:

Bad Customer Relationship *
Consider Customer as a Necessary Stakeholder
Active Involvement of Customer Throughout the Project
Enhance Customer's Confidence
Other:

Problem in Requirement Elicitation *
Devote Sufficient Time to Requirement Elicitation Phase
Complete and Correct Identification of Real Stakeholders
Utilization of all Possible Requirement Elicitation Techniques
Other:

Lack of Knowledge *
On-Job Training for Employees
Inter & Intra Team Knowledge Sharing
Arranging Formal & Informal Training Sessions
Other:

Problem of Team Feedback *
Strong Cohesion of Teams
Keep Everyone on Board
Encourage Shuffling of Team Members

75

Other:

Reduced Productivity Due to Delay *
Discourage Heavy Upfront Planning
Plan as you go Approach
Formulate Realistic Timelines
Other:

Lack of Customer Presence *
Encourage Customer Involvement Throughout the Project
Increase Customer's Confidence in Project's Ongoings
Ensure Virtual, if not Physical, Presence of Customer
Other:

Lack of Team Training *
On-Job Training for Team Members
Formal / Informal Training Sessions by Team Leaders
Induct Experienced Team Members
Other:

Lack of Effective Communication *
Formulate Proper Communication Mechanism
Ensure Optimum Communication and Knowledge Sharing Between Distributed Teams
Appoint a Project Facilitator to Ensure Coordination Between Teams
Other:

Lack of Team Orientation *
Organize Teams with Low Coupling and High Cohesion
Non-Overlapping Teams with Defined Roles
Make Team Coordination Top Priority
Other:

Management Unwilling to Change *
Mindset Towards Adoption of New Technologies
Leadership Change
Transfer of Powers from Management to Team Leaders
Other:

Too High Workload and Pressure *
Formulate Realistic Timelines
Ensure Strict Adherance to the Timelines
Enable Team Members to Follow Their Own Schedule
Routine Progress Feedback to Point Out Slacks
Other:

Misunderstanding Agile Concepts *
Organize Team Training Sessions
Hands on Experience on New Technologies
Outsource Agile Projects
Other:

76

Agile Customized Poorly *
Proper Implementation of Agile Concepts
Implement Proven & Tested Agile Scaling Frameworks
Outsource Agile Projects
Other:

Reverting to the Old Way of Working *
Invest in New Technologies
Develop Forward Advancing Attitude
Reduce Bureaucracy
Maintain Self-Autonomous Teams
Other:

Using Old and New Approaches Side by Side *
Adopt a Single Approach Organization Wide
Maintain Consistency in Work Practices
Adopt a Hybrid Strategy
Other:

Creating and Estimating User Stories Hard *
Realistic Work Breakdown Structure
Utilization of Proper Requirement Elicitation Technique
Realistic Requirement Inclusion in Elicitation Process
Other:

Requirement Ambiguity Affects Quality Assurance *
Ensure Adherence to Formal Elicitation Techniques
Manage Conflicting Requirements
Complete Involvement of all Stakeholders in Requirements Elicitation Process
Integrate Quality Assurance Activities in Each Phase
Other:

Lack of Proper Planning for Large Scale Agile Projects *
Employ Proven Project Management Techniques
Formulate Realistic Timelines
Follow up Meetings to Discuss Progress
Maintain Flexible Timelines
Other:

Complexity of Large-Scale Projects *
Identification of Implementable Tasks
Formulation of Realistic Work Breakdown Structure
Adoption of Proven Project Management Practices
Other:

Back

Submit

77

Page 3 of 3

Clear form

Never submit passwords through Google Forms.

